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Stability of the Zero Solution
of Stochastic Differential Systems with
Four-Dimensional Brownian Motion

Jaromı́r Baštinec, Marie Klimešová

Department of Mathematics, Faculty of Electrical Engineering and
Communication Brno University of Technology,

Technická 2848/8, Žabovřesky, 61600, Brno, Czech republic.
Email: bastinec@feec.vutbr.cz,
xklime01@stud.feec.vutbr.cz

Abstract: The natural world is influenced by stochasticity therefore stochastic
models are used to test various situations because only the stochastic model can
approximate the real model. For example, the stochastic model is used in popu-
lation, epidemic and genetic simulations in medicine and biology, for simulations
in physical and technical sciences, for analysis in economy, financial mathema-
tics, etc. The crucial characteristic of the stochastic model is its stability. Stability
of stochastic differential equations (SDEs) has become a very popular theme of
recent research in mathematics and its applications. This article studies the fun-
damental theory of the stochastic stability. There is investigated the stability of
the solution of stochastic differential equations and systems of SDEs. The article
begins with a summary of the stochastic theory. Then, there are inferred condi-
tions for the asymptotic mean square stability of the zero solution of stochastic
system with Brownian motion. There is used a Lyapunov function for proofs of
main results. The method of Lyapunov functions for the analysis of qualitative
behavior of SDEs provides some very useful information in the study of stability
properties for concrete stochastic dynamical systems, conditions of existence the
stationary solutions of SDEs and related problems. There are proved conditions
for the stability (asymptotic, stochastic asymptotic). The results are illustrated by
trivial examples for special types of matrices.

Keywords: Brownian motion, stochastic differential equation, Lyapunov function,
stochastic Lyapunov function, stability, stochastic stability.
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Introduction
Stochastic modeling has come to play an important role in many branches of
science and industry where more and more people have encountered stochastic
differential equations. Stochastic model can be used to solve problem which evin-
ces by accident, noise, etc. Definition of probability spaces, stochastic process,
stochastic differential equation and an existence and uniqueness of solution of
these equations, were mentioned in [11], [12], [14]. It was taken from B. Øksen-
dal [19], E. Kolářová [15], B. Maslowski [17], S. Ditlevsen [4], M. Navara [18]
and J. Staněk [20] and others. In this paper we focus on the description of the
stochastic stability. Stability is studied both for difference equations and systems
[6], and for differential equations and systems [1], [3], [5], [7] or [8]. In this paper
we use definitions of the stability theory of the stochastic system defined by R. Z.
Khasminskii [10]. The general principles of various types of stochastic systems
are described for example X.Mao [16].
In the paper we study the linear matrix systems. We derived sufficient conditions
of stochastic stability for general system of the zero solution of the stochastic di-
fferential equation using Lyapunov function. The same method can also be used
for constant matrix. Stochastic models may find the use in the optimization.

Definition 1 [19] If Ω is a given set, then a σ-algebra F on Ω is a family F of
subsets of Ω with the following properties:

(i) ∅ ∈ F

(ii) F ∈ F ⇒ FC ∈ F , where FC = Ω \ F is the complement of F in Ω

(iii) A1, A2, · · · ∈ F ⇒ A :=
∞⋃
i=1

Ai ∈ F .

The pair (Ω,F) is called a measurable space.

Definition 2 [19] A probability measure P on a measurable space (Ω,F) is a
function P : F −→ [0, 1] such that

(a) P (∅) = 0, P (Ω) = 1.
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(b) if A1, A2, · · · ∈ F and {Ai}∞i=1 is disjoint (i.e. Ai ∩ Aj = ∅ if i 6= j) then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai).

The triple (Ω,F , P ) is called a probability space. It is called a complete pro-
bability space if F contains all subsets G of Ω with P -outer measure zero, i.e.
with

P ∗(G) := inf{P (F );F ∈ F , G ⊂ F} = 0.

Definition 3 The stochastic process Bt is called Brownian motion or Wiener pro-
cess if the process has some basic properties:

(i) B0 = 0

(ii) Bt −Bs has the distribution N(0, t− s) for t ≥ s ≥ 0

(iii) Bt has independent increments, i.e.

Bt1 , Bt2 −Bt1 , . . . , Btk −Btk−1

are independent for all 0 ≤ t1 < t2 · · · < tk.

Note. The unconditional probability density function at a fixed time t

fBt(Xt) =
1√
2πt

exp

(
−X

2
t

2t

)
.

The expectation is zero; E [Bt] = 0 for t > 0. The variance is t; E [B2
t ] = t.

Theorem 1 Let Bt be Brownian motion. Then

E [BtBs] = min {t, s} for t ≥ 0, s ≥ 0.

Proof: [15], pp. 14.

Definition 4 Let Bi(t), t = 1, 2, . . . ,m, be a Brownian motion. Then B(t) =
(B1(t), ..., Bm(t)) denote m-dimensional Brownian motion.
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Definition 5 [19] Let (Ω,F , P ) be a probability space. LetBt = (B1(t), ..., Bm(t))
be m-dimensional Brownian motion and b : [0, T ]×Rn → Rn, σ : [0, T ]×Rn →
Rn×m be measurable functions. Then the process Xt = (X1(t), ..., Xm(t)), Xt ≡
X(t), t ∈ [0, T ] is the solution of the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, (1)

b(t,Xt) ∈ R × Rn, σ(t,Xt)Bt ∈ R × Rn. After the integration of equation (1)
we give the different form of the solution of the SDE

Xt = X0 +

t∫
0

b(s,Xs)ds+

t∫
0

σ(s,Xs)dBs.

Assume that for every initial value X(t0) = X0 ∈ Rn equation (1) has a
unique global solution that is denoted by X(t; t0, X0). We know that the solution
has continuous sample paths and its every moment is finite.

In the following text we will study the stability of various types of stability of
solutions of the system (1) and we will suppose that b(t, o)dt + σ(t, o)dBt = o,
where o is a zero vector . So equation (1) has the trivial solution o corresponding
to the initial value X(t0) = 0.

1 Stability of Stochastic Differential Equations
In 1892 A.M. Lyapunov developed a methods for determining stability without
solving the equation. We are used the second Lyapunov method:
Let K denote the family of all continuous nondecreasing functions µ : R+ → R+

such that µ(0) = 0 and µ(r) > 0 if r > 0. Let Sh = {Xt ∈ Rn : |Xt| < h}
for h > 0. A continuous function V (Xt, t) defined on Sh × [t0,∞) is said to be
positive-definite (in the sense of Lyapunov) if V (0, t) ≡ 0 and, for some µ ∈ K,

V (Xt, t) ≥ µ(|x|) for all (Xt, t) ∈ Sh × [t0,∞).

A function V (Xt, t) is said to be negative-definite if (−V (Xt, t)) is positive-
definite. A continuous non-negative function V (Xt, t) is said to be decrescent
(i.e. to have an arbitrarily small upper bound) if for some µ ∈ K,

V (Xt, t) ≤ µ(|Xt|) for all (Xt, t) ∈ Sh × [t0,∞).
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A function V (Xt, t) defined on Rn × [t0,∞) is said to be radially unbounded if

lim
|x|→∞

(
inf
t≥t0

V (Xt, t)

)
=∞.

Let C1,1(Sh× [t0,∞), R+) denote the family of all continuous functions V (Xt, t)
from Sh × [t0,∞) to R+ with continuous first partial derivatives with respect to
every component of Xt and to t. Then V (t) = V (t,Xt) represents a function of t
with the derivative

V̇ (t) = Vt(t,Xt) + VXt(t,Xt)b(t,Xt) =
∂V (t,Xt)

∂t
+

n∑
i=1

∂V (t,Xt)bi(t,Xt)

∂Xi

.

If V̇ (t) ≤ 0, then V (t) will not increase so the distance of Xt from the equilib-
rium point measured by V (t,Xt) does not increase. If V̇ (t) < 0, then V (t) will
decrease to zero so the distance will decrease to zero, that is Xt → 0. [16]

1.1 Stability in probability
Theorem 2 (Lyapunov theorem) [16] If there exists a positive-definite function
V (Xt, t) ∈ C1,1(Sh × [t0,∞), R+) such that

V̇ (Xt, t) := Vt(t,Xt) + VXt(t,Xt)b(t,Xt) ≤ 0

for all (Xt, t) ∈ Sh × [t0,∞), then the trivial solution is stable. If there exists a
positive-definite decrescent function V (Xt, t) ∈ C1,1(Sh × [t0,∞), R+) such that
V̇ (Xt, t) is negative-definite, then trivial solution of the system is asymptotically
stable.

Suppose one would like to let the initial value be a random variable. It should
also be pointed out that when σ(t,Xt) = 0, these definitions reduce to the corre-
sponding deterministic ones. We now extend the Lyapunov Theorem 2 to the sto-
chastic case. Let 0 < h ≤ ∞. Denote by C2,1(Sh × R+, R+) the family of all
nonnegative functions V (Xt, t) defined on Sh × R+ such that they are continu-
ously twice differentiable in Xt and once in t. Define the differential operator LV
associated with equation (1) by

LV =
∂V

∂t
+

n∑
i=1

∂V (t,Xt)bi(Xt, t)

∂Xi

+
1

2

n∑
i,j=1

∂2V
[
σ(Xt, t)σ

T (Xt, t)
]
ij

∂Xi∂Xj

.
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The inequality V̇ (Xt, t) ≤ 0 will be replaced by LV (Xt, t) ≤ 0 in order to get the
stochastic stability assertions.

Definition 6 [16] The trivial solution of equation (1) is stochastically stable if
there exists a positive-definite function V (Xt, t) ∈ C2,1(Sh × [t0,∞), R+) such
that

LV (Xt, t) ≤ 0

for all (Xt, t) ∈ Sh × [t0,∞).

If there exists a positive-definite decrescent function V (Xt, t) ∈ C2,1(Sh ×
[t0,∞), R+) such that LV (Xt, t) is negative-definite, then the trivial solution of
equation (1) is stochastically asymptotically stable.

If there exists a positive-definite decrescent radially unbounded function V (Xt, t) ∈
C2,1(Rn × [t0,∞), R+) such that LV (Xt, t) is negative-definite, then the trivial
solution of equation (1) is stochastically asymptotically stable in the large.

Proof: [16], pp. 111.

1.2 Almost sure exponential stability
Definition 7 [16] The trivial solution of equation (1) is said to be almost surely
exponentially stable if

lim
t→∞

sup
1

t
log |X(t, t0, X0)| < 0 a.s. (2)

for allX0 ∈ Rn. The left-hand side of (2) is called the sample Lyapunov exponents
of the solution of the stochastic system.

The trivial solution is almost surely exponentially stable if and only if the
sample Lyapunov exponents are negative. The almost sure exponential stability
means that almost all sample paths of the solution will tend to the equilibrium
position Xt = 0 exponentially fast.

Lemma 1 [16] For all Xt0 6= 0 in Rn

P {X(t, t0, X0) 6= 0 on t ≥ t0} = 1,

where P {X(t, t0, X0)} is the probability that the occurrenceXt is based on point
X0(t0). That is, almost all the sample path of any solution starting from a non-zero
state will never reach the origin.

12



Definition 8 [16] Assume that there exists a function V ∈ C2,1(Rn× [t0,∞), R+)
and constants p > 0, c1 > 0, c2 ∈ R, c3 ≥ 0, such that for all X0 6= 0 and t ≥ t0,

(i) c1 |x|p ≤ V (Xt, t),

(ii) LV (Xt, t) ≤ c2V (Xt, t)

(iii) |VXt(Xt, t)σ(Xt, t)|2 ≥ c3V
2(Xt, t)

Then
lim
t→∞

sup
1

t
log |X(t, t0, X0)| ≤ −

c3 − 2c2
2p

a.s.

for all X0 ∈ Rn. In particular, if c3 > 2c2, the trivial solution of equation (1) is
almost surely exponentially stable.

Proof: [16], pp. 121.

Definition 9 [16] Assume that there exists a function V ∈ C2,1(Rn× [t0,∞), R+)
and constants p > 0, c1 > 0, c2 ∈ R, c3 ≥ 0, such that for all X0 6= 0 and t ≥ t0,

(i) c1 |x|p ≥ V (Xt, t) > 0,

(ii) LV (Xt, t) ≥ c2V (Xt, t)

(iii) |VXt(Xt, t)σ(Xt, t)|2 ≤ c3V
2(Xt, t)

Then
lim
t→∞

inf
1

t
log |X(t, t0, X0)| ≥ −

2c2 − c3
2p

a.s.

for all X0 ∈ Rn. In particular, if 2c2 > c3, then almost all the sample paths of
|X(t, t0, X0)| will tend to infinity, and we say in this case that the trivial solution
of equation (1) is almost surely exponentially unstable.

Proof: [16], pp. 121.
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1.3 Moment exponential stability
Definition 10 [16] The trivial solution of equation (1) is said to be p−th moment
exponentially stable if there is a pair of positive constants λ and C such that

E |X(t, t0, X0)|p ≤ C |X0|p exp (−λ(t− t0)) on t ≥ t0

for all X0 ∈ Rn. When p = 2, it is usually said to be exponentially stable in mean
square. It also follows that

lim
t→∞

sup
1

t
log (E |X(t, t0, X0)|p) < 0. (3)

The p−th moment exponential stability means that the p−th moment of the solu-
tion will tend to 0 exponentially fast. The left-hand side of (3) is called the p−th
moment Lyapunov exponent of the solution.

Theorem 3 [16] Assume that there is a positive constant K such that

XT
t b(Xt, t) ∨ |σ(Xt, t)|2 ≤ K |Xt|2 for all (Xt, t) ∈ Rn × [t0,∞).

Then the pth moment exponential stability of the trivial solution of equation (1)
implies the almost sure exponential stability.

Proof: [16], pp. 128.

Theorem 4 [16] Assume that there is a function V (Xt, t) ∈ C2,1(Rn×[t0,∞), R+)
and positive constants c1, c2, c3, such that

c1 |Xt|p ≤ V (Xt, t) ≤ c2 |Xt|p and LV (Xt, t) ≤ −c3V (Xt, t)

for all (Xt, t) ∈ Rn × [t0,∞). Then

E |X(t, t0, X0)|p ≤
c2
c1
|X0|p exp (−c3(t− t0)) on t ≥ t0 (4)

for all X0 ∈ Rn. In other words, the trivial solution of equation (1) is p−th
moment exponentially stable and the p−th moment Lyapunov exponent should not
be greater than −c3.

Proof: [16], pp. 130.
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Theorem 5 [16] Let q > 0. Assume that there is a function V (Xt, t) ∈ C2,1(Rn×
[t0,∞), R+) and positive constants c1, c2, c3, such that

c1 |Xt|q ≤ V (Xt, t) ≤ c2 |Xt|q and LV (Xt, t) ≥ c3V (Xt, t)

for all (Xt, t) ∈ Rn × [t0,∞). Then

E |X(t, t0, X0)|q ≥
c1
c2
|X0|q exp (c3(t− t0)) on t ≥ t0 (5)

for all X0 ∈ Rn, and we say in this case that the trivial solution of equation (1) is
q−th moment exponentially unstable.

Proof: [16], pp. 131.

1.4 Stochastic Stability and Nonstability
It is not surprising that noise can destabilize a stable system. And the noise can
stabilized the unstable system. In this section we shall establish a general theory of
stochastic stabilization and destabilization for a given nonlinear system. Suppose
that the given system is described by a nonlinear ordinary differential equation

ẏ(t) = f(y(t)) on t ≥ t0, y(t0) = X0 ∈ Rd.

Here f : Rd × R+ → Rd is a locally Lipschitz continuous function and particu-
larly, for some K > 0,

|f(Xt, t)| ≤ K |Xt| for all (Xt, t) ∈ Rd ×R+. (6)

We now use the m-dimensional Brownian motion B(t) = (B1(t), . . . , Bm(t))T

as the source of noise to perturb the given system. For simplicity, suppose the sto-
chastic perturbation is of a linear form, that is the stochastically perturbed system
is described by the semilinear Itô equation

dXt = f(Xt, t)dt+
m∑
i=1

GiXtdBi(t) on t ≥ t0, X(t0) = X0 ∈ Rd, (7)

where all Gi, 1 ≤ i ≤ m are d × d matrices. Clearly, equation (7) has a unique
solution denoted by X(t; t0, X0) again and, moreover, it admits a trivial solution
Xt ≡ 0.
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Theorem 6 [16] Let (6) hold. Assume that there are two constants λ > 0 and
ρ ≥ 0 such that

m∑
i=1

∣∣GiX
2
t

∣∣ ≤ λ |Xt|2 and

m∑
i=1

∣∣XT
t GiX

2
t

∣∣ ≥ ρ |Xt|4 (8)

for all Xt ∈ Rd. Then

lim
t→∞

sup
1

t
log |X(t; t0, X0)| ≤ −

(
ρ−K − λ

2

)
a.s. (9)

for all X0 ∈ Rd. In particular, if ρ > K + 1
2
λ, then the trivial solution of equation

(7) is almost surely exponentially stable.

Proof: [16], pp. 137.

2 Main results

2.1 Four-Dimensional Brownian Motion
We have a matrix linear stochastic differential equation

dXt = AXtdt+GdBt, (10)

whereXt =


X1(t)
X2(t)
X3(t)
X4(t)

 , A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 , G =


g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44

 ,

Bt =


B1(t)
B2(t)
B3(t)
B4(t)

 , aij, gij for i, j = 1, 2, 3, 4 are constants.

Definition 11 Lyapunov quadratic function V is given

V (Xt) = XT
t Q Xt,

where Q is a symmetric positive-definite matrix.
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The Euclidean matrix norm of the matrixA = (aij), i = 1, . . . , n; j = 1, . . . , n
on the space Rn can be define as

‖A‖E :=

√√√√ n∑
i=1

m∑
j=1

a2ij.

2.2 Results for the general matrix Q
Definition 12 Lyapunov quadratic function V is given

V (Xt) = XT
t Q Xt,

where Q =


q1 q2 q3 q4
q2 q1 q2 q3
q3 q2 q1 q2
q4 q3 q2 q1

 is a symmetric positive-definite matrix. Positive-

definite matrix is verified by the Sylvester’s criterion. There have to apply these
conditions together

∆1 = q1 > 0,

∆2 = q21 − q22 > 0,

∆3 = q31 + 2q22q3 − q1q23 − 2q1q
2
2 > 0,

∆4 = q1q
3
2 + q1q2q

2
3 + q31q4 − q1q22q4 − 2q21q2q3 − q21q22 − 2q22q

2
3 − q32q4 + q42 + q43

+2q1q
2
2q3 + 4q1q2q3q4 + q22q

2
4 − 2q2q

2
3q4 − q21q23 − q32q4 − q21q24 > 0.

Theorem 7 Zero solution of equation (10) is stochastically stable if holds

LV < 0,

where

LV = 2 (a11q1 + a21q2 + a31q3 + a41q4)X
2
1 (t) + 2 (a12q2 + a22q1 + a32q2

+ a42q3)X
2
2 (t) + 2 (a13q3 + a23q2 + a33q1 + a43q2)X

2
3 (t) + 2 (a14q4

+ a24q3 + a34q2 + a44q1)X
2
4 (t) + 2 (a12q1 + a11q2 + a22q2 + a21q1 + a32q3

+ a31q2 + a42q4 + a41q3)X1(t)X2(t) + 2 (a13q1 + a11q3 + a23q2 + a23q1

+ a21q2 + a33q3 + a31q1 + a43q4 + a41q2)X1(t)X3(t) + 2 (a14q1 + a11q4

+ a24q2 + a21q3 + a34q3 + a31q2 + a44q4 + a41q1)X1(t)X4(t) + 2 (a13q2
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+ a12q3 + a22q2 + a33q2 + a32q1 + a43q3 + a42q2)X2(t)X3(t) + 2 (a14q2

+ a24q1 + a22q3 + a34q2 + a32q2 + a44q3 + a42q1)X2(t)X4(t) + 2 (a14q3

+ a24q2 + a23q3 + a34q1 + a33q2 + a44q2 + a43q1)X3(t)X4(t) + q1
(
g211

+ g212 + g213 + g214 + g221 + g222 + g223 + g224 + g231 + g232 + g233 + g234 + g241
+ g242 + g243 + g244

)
+ 2q2 (g11g21 + g12g22 + g13g23 + g14g24 + g21g31 + g22g32

+ g23g33 + g24g34 + g31g41 + g32g42 + g33g43 + g34g44) + 2q3 (g11g31

+ g12g32 + g13g33 + g14g34 + g21g41 + g22g42 + g23g43 + g24g44) + 2q4

× (g11g41 + g12g42 + g13g43 + g14g44) .

Proof:
We compute derivation of Lyapunov function of equation (10). We get the equation

dV (Xt) = XT
t QAXtdt+XT

t QGdBt +XT
t A

TdtQXt + dBT
t G

TQXt

+ dBT
t G

TQGdBt.

In matrix form

dV


X1(t)
X2(t)
X3(t)
X4(t)



=


X1(t)
X2(t)
X3(t)
X4(t)


T 

q1 q2 q3 q4
q2 q1 q2 q3
q3 q2 q1 q2
q4 q3 q2 q1




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




X1(t)
X2(t)
X3(t)
X4(t)

 dt

+


X1(t)
X2(t)
X3(t)
X4(t)


T 

q1 q2 q3 q4
q2 q1 q2 q3
q3 q2 q1 q2
q4 q3 q2 q1




g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44




dB1(t)
dB2(t)
dB3(t)
dB4(t)



+


X1(t)
X2(t)
X3(t)
X4(t)


T 

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


T 

q1 q2 q3 q4
q2 q1 q2 q3
q3 q2 q1 q2
q4 q3 q2 q1




X1(t)
X2(t)
X3(t)
X4(t)

 dt
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+


dB1(t)
dB2(t)
dB3(t)
dB4(t)


T 

g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44


T 

q1 q2 q3 q4
q2 q1 q2 q3
q3 q2 q1 q2
q4 q3 q2 q1




X1(t)
X2(t)
X3(t)
X4(t)



+

 dB1(t)
dB2(t)
dB3(t)

T


g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44


T 

q1 q2 q3 q4
q2 q1 q2 q3
q3 q2 q1 q2
q4 q3 q2 q1



×


g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44




dB1(t)
dB2(t)
dB3(t)
dB4(t)

 .

We get

dV (Xt)

= 2 (a11q1 + a21q2 + a31q3 + a41q4)X
2
1 (t)dt+ 2 (a12q2 + a22q1 + a32q2 + a42q3)

× X2
2 (t)dt+ 2 (a13q3 + a23q2 + a33q1 + a43q2)X

2
3 (t)dt+ 2 (a14q4 + a24q3

+ a34q2 + a44q1)X
2
4 (t)dt+ 2 (a12q1 + a11q2 + a22q2 + a21q1 + a32q3 + a31q2

+ a42q4 + a41q3)X1(t)X2(t)dt+ 2 (a13q1 + a11q3 + a23q2 + a23q1 + a21q2 + a33q3

+ a31q1 + a43q4 + a41q2)X1(t)X3(t)dt+ 2 (a14q1 + a11q4 + a24q2 + a21q3 + a34q3

+ a31q2 + a44q4 + a41q1)X1(t)X4(t)dt+ 2 (a13q2 + a12q3 + a22q2 + a33q2 + a32q1

+ a43q3 + a42q2)X2(t)X3(t)dt+ 2 (a14q2 + a24q1 + a22q3 + a34q2 + a32q2 + a44q3

+ a42q1)X2(t)X4(t)dt+ 2 (a14q3 + a24q2 + a23q3 + a34q1 + a33q2 + a44q2 + a43q1)

× X3(t)X4(t)dt+ q1
(
g211 + g212 + g213 + g214 + g221 + g222 + g223 + g224 + g231 + g232

+ g233 + g234 + g241 + g242 + g243 + g244
)

dt+ 2q2 (g11g21 + g12g22 + g13g23 + g14g24

+ g21g31 + g22g32 + g23g33 + g24g34 + g31g41 + g32g42 + g33g43 + g34g44) dt

+ 2q3 (g11g31 + g12g32 + g13g33 + g14g34 + g21g41 + g22g42 + g23g43 + g24g44) dt

+ 2q4 (g11g41 + g12g42 + g13g43 + g14g44) dt+ 2 [(q1X1(t) + q2X2(t) + q3X3(t)

+ q4X4(t)) (g11dB1(t) + g12dB2(t) + g13dB3(t) + g14dB4(t)) + (q2X1(t)

+ q1X2(t) + q2X3(t) + q3X4(t)) (g21dB1(t) + g22dB2(t) + g23dB3(t) + g24dB4(t))

+ (q3X1(t) + q2X2(t) + q1X3(t) + q2X4(t)) (g31dB1(t) + g32dB2(t) + g33dB3(t)
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+ g34dB4(t)) + (q4X1(t) + q3X2(t) + q2X3(t) + q1X4(t)) (g41dB1(t) + g42dB2(t)

+ g43dB3(t) + g44dB4(t))]

We apply expectation E {dV (Xt)}

E {dV (Xt)} = 2 (a11q1 + a21q2 + a31q3 + a41q4)X
2
1 (t) + 2 (a12q2 + a22q1 + a32q2

+ a42q3)X
2
2 (t) + 2 (a13q3 + a23q2 + a33q1 + a43q2)X

2
3 (t) + 2 (a14q4

+ a24q3 + a34q2 + a44q1)X
2
4 (t) + 2 (a12q1 + a11q2 + a22q2 + a21q1

+ a32q3 + a31q2 + a42q4 + a41q3)X1(t)X2(t) + 2 (a13q1 + a11q3

+ a23q2 + a23q1 + a21q2 + a33q3 + a31q1 + a43q4 + a41q2)X1(t)X3(t)

+ 2 (a14q1 + a11q4 + a24q2 + a21q3 + a34q3 + a31q2 + a44q4 + a41q1)

× X1(t)X4(t) + 2 (a13q2 + a12q3 + a22q2 + a33q2 + a32q1 + a43q3

+ a42q2)X2(t)X3(t) + 2 (a14q2 + a24q1 + a22q3 + a34q2 + a32q2

+ a44q3 + a42q1)X2(t)X4(t) + 2 (a14q3 + a24q2 + a23q3 + a34q1

+ a33q2 + a44q2 + a43q1)X3(t)X4(t) + q1
(
g211 + g212 + g213 + g214 + g221

+ g222 + g223 + g224 + g231 + g232 + g233 + g234 + g241 + g242 + g243 + g244
)

+ 2q2 (g11g21 + g12g22 + g13g23 + g14g24 + g21g31 + g22g32 + g23g33

+ g24g34 + g31g41 + g32g42 + g33g43 + g34g44) + 2q3 (g11g31 + g12g32

+ g13g33 + g14g34 + g21g41 + g22g42 + g23g43 + g24g44) + 2q4 (g11g41

+ g12g42 + g13g43 + g14g44) = LV dt

.

2.3 Results for the unit matrix Q
For Q = I , where I is a unit matrix, we get

LV = 2a11X
2
1 (t) + 2a22X

2
2 (t) + 2a33X

2
3 (t) + 2a44X

2
4 (t) + 2 (a12 + a21)X1(t)X2(t)

+ 2 (a13 + a23 + a31)X1(t)X3(t) + 2 (a14 + a41)X1(t)X4(t) + 2a32X2(t)X3(t)

+ 2 (a24 + a42)X2(t)X4(t) + 2 (a34 + a43)X3(t)X4(t) +
(
g211 + g212 + g213 + g214

+ g221 + g222 + g223 + g224 + g231 + g232 + g233 + g234 + g241 + g242 + g243 + g244
)

Now we can find conditions of a stability system. The system will be stable if the
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Lyapunov function LV is negative definite, so

2a11X
2
1 (t) + 2a22X

2
2 (t) + 2a33X

2
3 (t) + 2a44X

2
4 (t) + 2 (a12 + a21)X1(t)X2(t)

+ 2 (a13 + a23 + a31)X1(t)X3(t) + 2 (a14 + a41)X1(t)X4(t) + 2a32X2(t)X3(t)

+ 2 (a24 + a42)X2(t)X4(t) + 2 (a34 + a43)X3(t)X4(t) + ‖G‖2 ≤ 0.

Remark: Because ‖G‖2 ≥ 0, therefore the matrix A must be sufficiently negative,
to obtain a negative definite function. We will demonstrate that the matrix A must
be more dominant than the matrix G for the stability of the stochastic system,

‖A‖ � ‖G‖ .

3 Examples

3.1 Example 1

We consider matrices A and G in the form

A =


a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

 , G =


a
10

0 0 0
0 a

10
0 0

0 0 a
10

0
0 0 0 a

10

 .

3.1.1 Conditions for the existence of solutions

The matrix A will be negative definite under following conditions:

D1 = a < 0,
D2 = a2 > 0, D2 follows from D1,
D3 = a3 < 0⇔ a < 0 ∧ a2 > 0, D3 follows from D1, D2,
D4 = a4 > 0⇔ a2 > 0, D4 follows from D2.

From these conditions it is evident that a < 0 or the first condition D1.
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3.1.2 Solution of the differential system A

We find eigenvalues of matrix A as the solution of the characteristic equation∣∣∣∣∣∣∣∣
a− λ 0 0 0

0 a− λ 0 0
0 0 a− λ 0
0 0 0 a− λ

∣∣∣∣∣∣∣∣ = 0,

(a− λ)4 = 0⇒ λ1,2,3,4 = a.

Then

X1(t) = eat,

X2(t) = teat,

X3(t) = t2eat,

X4(t) = t3eat.

The general solution is given by a linear combination Xt = C1X1(t)+C2X2(t)+
C3X3(t) + C4X4(t) with arbitrary constants C1, C2, C3, C4, so

Xt = C1e
at + C2te

at + C3t
2eat + C4t

3eat, t ∈ R,

and because a < 0, then this solution is stable.

3.1.3 Solution of the stochastic system

We determine stability of solution for Q = I

dV (Xt) = 2

(
aX2

1 (t) + aX2
2 (t) + aX2

3 (t) + aX2
4 (t) +

a2

50

)
dt+

a

5
X1(t)dB1(t)

+
a

5
X2(t)dB2(t) +

a

5
X3(t)dB3(t) +

a

5
X4(t)dB4(t).

E {dV (Xt)} = 2

(
aX2

1 (t) + aX2
2 (t) + aX2

3 (t) + aX2
4 (t) +

a2

50

)
dt = LV dt.

If holds the inequality LV ≤ 0, thus

a ‖X(t)‖2 ≤ −a
2

50
,

for Xt = C1e
at +C2te

at +C3t
2eat +C4t

3eat, t ∈ R, then the system is stochastic
stable.
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3.2 Example 2

We consider matrices A and G in the form

A =


a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

 , G =


a1
10

0 0 0
0 a2

10
0 0

0 0 a3
10

0
0 0 0 a4

10

 ,

where ai 6= aj for i 6= j; i, j = 1, 2, 3, 4.

3.2.1 Conditions for the existence of solutions

The matrix A will be negative definite under following conditions:

D1 = a1 < 0,
D2 = a1a2 > 0⇔ a2 < 0, D2 follows from D1,
D3 = a1a2a3 < 0⇔ a3 < 0, D3 follows from D2,
D4 = a1a2a3a4 > 0⇔ a4 < 0, D4 follows from D3.

From these conditions it is evident that ai < 0, i = 1, 2, 3, 4.

3.2.2 Solution of the differential system A

We find eigenvalues of matrix A as the solution of the characteristic equation∣∣∣∣∣∣∣∣
a1 − λ 0 0 0

0 a2 − λ 0 0
0 0 a3 − λ 0
0 0 0 a4 − λ

∣∣∣∣∣∣∣∣ = 0,

(a1 − λ)(a2 − λ)(a3 − λ)(a4 − λ) = 0.

Then

λi = ai ⇒ Xi(t) = eait.

The general solution with arbitrary constants C1, C2, C3, C4 is given by

Xt =
4∑

i=1

Cie
ait, t ∈ R,

and because ai < 0, then this solution is stable.
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3.2.3 Solution of the stochastic system

We determine stability of solution for Q = I

dV (Xt) = 2

(
a1X

2
1 (t) + a2X

2
2 (t) + a3X

2
3 (t) + a4X

2
4 (t) +

a21 + a22 + a23 + a24
200

)
dt

+
a1
5
X1(t)dB1(t) +

a2
5
X2(t)dB2(t) +

a3
5
X3(t)dB3(t) +

a4
5
X4(t)dB4(t).

E {dV (Xt)} = 2

(
a1X

2
1 (t) + a2X

2
2 (t) + a3X

2
3 (t) + a4X

2
4 (t) +

a21 + a22 + a23 + a24
200

)
dt

= LV dt.

If holds the inequality LV ≤ 0, thus

a1X
2
1 (t) + a2X

2
2 (t) + a3X

2
3 (t) + a4X

2
4 (t) ≤ −a

2
1 + a22 + a23 + a24

100
,

for Xt =
∑4

i=1Cie
ait, t ∈ R, then the system is stochastic stable.

3.3 Example 3

We consider matrices A and G in the form

A =


a1 1 1 1
0 a2 1 1
0 0 a3 1
0 0 0 a4

 , G =


a1
10

1 1 1
0 a2

10
1 1

0 0 a3
10

1
0 0 0 a4

10

 .

3.3.1 Conditions for the existence of solutions

The matrix A will be negative definite under following conditions:

D1 = a1 < 0,
D2 = a1a2 > 0⇔ a2 < 0, D2 follows from D1,
D3 = a1a2a3 < 0⇔ a3 < 0, D3 follows from D2,
D4 = a1a2a3a4 > 0⇔ a4 < 0, D4 follows from D3.

From these conditions it is evident that ai < 0, i = 1, 2, 3, 4.
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3.3.2 Solution of the differential system A

We find eigenvalues of matrix A as the solution of the characteristic equation∣∣∣∣∣∣∣∣
a1 − λ 1 1 1

0 a2 − λ 1 1
0 0 a3 − λ 1
0 0 0 a4 − λ

∣∣∣∣∣∣∣∣ = 0,

(a1 − λ)(a2 − λ)(a3 − λ)(a4 − λ) = 0.

According to previous example the general solution with arbitrary constantsC1, C2, C3, C4

is given by

Xt = C1e
a1t + C2e

a2t + C3e
a3t + C4e

a4t, t ∈ R.

We can write for a general matrix H

H =


a1 α β γ
0 a2 δ ε
0 0 a3 κ
0 0 0 a4

 ,

where α, β, γ, δ, ε, κ ∈ R, the general solution is

Xt = C1e
a1t + C2e

a2t + C3e
a3t + C4e

a4t, t ∈ R,

where C1, C2, C3, C4 are constants.

3.3.3 Solution of the stochastic system

We determine stability of solution for Q = I .

dV (Xt) = 2(a1X
2
1 (t) + a2X

2
2 (t) + a3X

2
3 (t) + a4X

2
4 (t) +X1(t)X2(t) + 2X1(t)X3(t)

+ X1(t)X4(t) +X2(t)X4(t) +X3(t)X4(t) +
a21 + a22 + a23 + a24

200
+ 3)dt

+ 2X1(t)
(a1

10
dB1(t) + dB2(t) + dB3(t) + dB4(t)

)
+ 2X4(t)

(a4
10

dB4(t)
)

+ 2X2(t)
(a2

10
dB2(t) + dB3(t) + dB4(t)

)
+ 2X3(t)

(a3
10

dB3(t) + dB4(t)
)
.

25



E {dV (Xt)} = 2(a1X
2
1 (t) + a2X

2
2 (t) + a3X

2
3 (t) + a4X

2
4 (t) +X1(t)X2(t) + 2X1(t)X3(t)

+ X1(t)X4(t) +X2(t)X4(t) +X3(t)X4(t) +
a21 + a22 + a23 + a24

200
+ 3)dt

= LV dt.

If holds the inequality LV ≤ 0, thus

a1X
2
1 (t) + a2X

2
2 (t) + a3X

2
3 (t) + a4X

2
4 (t) +X1(t)X2(t) + 2X1(t)X3(t) +X1(t)X4(t)

+ X2(t)X4(t) +X3(t)X4(t) ≤ −
a21 + a22 + a23 + a24

100
− 6,

for Xt = C1e
a1t + C2e

a2t + C3e
a3t + C4e

a4t, t ∈ R, then the system is stochastic
stable.

3.4 Example 4

We consider matrices A and G in the form

A =


a1 0 0 a2
0 a1 a2 0
0 a2 a1 0
a2 0 0 a1

 , G =


a1
10

0 0 a2
10

0 a1
10

a2
10

0
0 a2

10
a1
10

0
a2
10

0 0 a1
10

 .

3.4.1 Conditions for the existence of solutions

The matrix A will be negative definite under following conditions:

D1 = a1 < 0,
D2 = a21 > 0, D2 follows from D1,
D3 = a31 − a1a22 < 0⇔ a1 < 0 ∧ a21 − a22 > 0⇒ |a2| < |a1| .
D4 = a41 − 2a21a

2
2 + a42 > 0⇔ (a21 − a22)2 > 0, D4 holds for arbitrary |a1| 6= |a2| .

From these conditions it is evident that a1 < 0 and |a2| < |a1|.

3.4.2 Solution of the differential system A

We find eigenvalues of matrix A as the solution of the characteristic equation∣∣∣∣∣∣∣∣
a1 − λ 0 0 a2

0 a1 − λ a2 0
0 a2 a1 − λ 0
a2 0 0 a1 − λ

∣∣∣∣∣∣∣∣ = 0,
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[(a1 − λ)2 − a22]2 = 0,

|a1 − λ| = |a2| .

Then according to Example (3.2) in paper [2] we get

for a2 > 0 is X1,2(t) = (1, 1)T e(−a1+a2)t,

for a2 < 0 is X1,2(t) = (−1, 1)T e(−a1+a2)t,

for a2 < 0 is X3,4(t) = (1, 1)T e(−a1−a2)t,

for a2 > 0 is X3,4(t) = (1,−1)T e(−a1−a2)t.

The general solution is given by a linear combination Xt = C1X1(t)+C2X2(t)+
C3X3(t) + C4X4(t), with arbitrary constants C1, C2, C3, C4.

3.4.3 Solution of the stochastic system

We determine stability of solution for Q = I .

dV (Xt) = 2
[
a1(X

2
1 (t) +X2

2 (t) +X2
3 (t) +X2

4 (t)) + a2(X1(t)X3(t) + 2X1(t)X4(t)

+ X2(t)X3(t)) +
a21
50

+
a22
50

]
dt+ 2X1(t)

(a1
10

dB1(t) +
a2
10

dB4(t)
)

+ 2X2(t)
(a1

10
dB2(t) +

a2
10

dB3(t)
)

+ 2X3(t)
(a2

10
dB2(t) +

a1
10

dB3(t)
)

+ 2X4(t)
(a2

10
dB1(t) +

a1
10

dB4(t)
)
.

E {dV (Xt)} = 2
[
a1(X

2
1 (t) +X2

2 (t) +X2
3 (t) +X2

4 (t)) + a2(X1(t)X3(t) + 2X1(t)X4(t)

+ X2(t)X3(t)) +
a21
50

+
a22
50

]
dt

= LV dt.

If holds the inequality LV ≤ 0, thus

a1 ‖X(t)‖2 + a2(X1(t)X3(t) + 2X1(t)X4(t) +X2(t)X3(t)) ≤ −
a21 + a22

50
,

for Xt = C1X1(t) + C2X2(t) + C3X3(t) + C4X4(t), t ∈ R, then the system is
stochastic stable.
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4 Conclusion
There was defined stability and stochastic stability of the stochastic differential
system. Conditions for stochastic stability were established on the model of the
stochastic differential system with four-dimensional Brownian motion by using
Lyapunov theorem. Results were illustrated on trivial examples. Such type of
equations can be used also in biomedical engineering, in meteorology, epidemic
modeling, predicting economics, etc.
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Abstract: The article is devoted to an example of a discrete representation of functions from 

the point of view of an iteration theory. On the basis of two real functions, the hyperbolic sine 

and cosine are represented through their vertex graphs and the existence of iterative roots is 

solved. The article includes also basic information and examples of isomorphic mono-unary 

algebras. In the conclusion of the article there is given a discrete description of a function f(x) 

= cosh x  1, where a formal description of its second iterative roots is demonstrated.  

 

Keywords: Hyperbolic functions; theory of iteration; iterative roots; vertex graph; mono-

unary algebra. 

 

 

INTRODUCTION  

 

     Currently, the subject matter and methods of mathematics teaching in the world are 

undergoing a phase of substantial changes which have resulted from the development of 

mathematics and its applications. Mathematics teaching has to lead to its applicability. 

Mathematics should not be taught as a theoretical discipline, but as a tool for solving practical 

problems. The need of the conscious acquisition of mathematics requires the subject matter to 

form an integrated system where all pieces of knowledge are brought into accord through 

multiple mutual relations, links and connections which finally contribute to their 

understanding, retention and usage. Such a synthesizing attitude should determine all 

knowledge of students. 

     Especially, the dual “approach” to elementary real functions of one variable (from the 

continuous and discrete points of view) is of great significance. Within the scope of school 

mathematics at all types and stages of schools, the continuous approach is preferred, where 

functions are represented through their Cartesian graphs. The other approach, the discrete one, 

where functions are represented through their vertex graphs, is nearly unknown to the 

students. 

     This article shows an example of the discrete approach to functions through the description 

of vertex graphs of two hyperbolic functions – the sine and cosine – including the use of their 

graphs for solving the problem of iterative roots of these functions. In the final part there is 

given one “modification” of the hyperbolic cosine which shows further remarkable 

applications for solving functional equations. The reason for the choice of these two 

hyperbolic functions is, among others, the fact that although these functions are relatively 

simple in the form and they have quite a lot of practical applications, they are unjustly 

neglected at school mathematics. 
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1.  HYPERBOLIC FUNCTIONS 

Let x  R be arbitrary, then sinh x = 
2

ee
xx 


, cosh x = 

2

ee
xx 


. The Cartesian graphs are 

represented in Figure 1. 

                          
Fig. 1 

From the definitions and Cartesian graphs it is evident that both functions are defined on the 

whole real axis, the range of function sinh x is the set R, the range of function cosh x is an 

interval 1,  ). The hyperbolic sine is an odd function, while the hyperbolic cosine is an even 

one. 

      Now let us show why the given functions are the hyperbolic ones. From the definitions we 

can derive the formula cosh2 x  sinh2 x = 1; it means the point in the plain the Cartesian 

coordinates of which are [a cosh t, b sinh t], where a, b are positive real numbers, t is a real 

parameter, lies on the hyperbola 1
b

y

a

x

2

2

2

2

 . Through equations x = a cosh t, y = b sinh t it 

is possible to parametrize the hyperbola in the same way as the ellipse through equations        

x = a cos t, y = b sin t. 

     There arises a natural question: Do hyperbolic and goniometric functions have similar 

properties? The answer is a positive one: similarly to trigonometry, it is possible to define the 

hyperbolic tangent and hyperbolic cotangent, and to derive formulas similar to the ones which 

apply for goniometric functions. Let us state some of them: 

tgh x = 
xcosh

xsinh
,  cotgh x = 

xsinh

xcosh
, x  0,  sinh 2x = 2 sinh x cosh x, 

cosh 2x = sinh2 x + cosh2 x,  sinh (x  y) = sinh x cosh y  cosh x sinh y, etc. 

     Hyperbolic functions have a wide range of applications in mathematical analysis and 

physics. E.g. it is possible to find the solution of the integral of the type 


22
ax

dx
 through 

the substitution x = a sinh t, the integral of the type 


22
ax

dx
 could be solved through the 

substitution x = a cosh t. The expansion of both basic hyperbolic functions to the Taylor 

series is also widely used: 

sinh x = x + 
!3

x
3

 + 
!5

x
5

 + ... = 







0k

1k2

)!1k2(

x
,      cosh x = 1 + 

!2

x
2

 + 
!4

x
4

 + ... = 


0k

k2

)!k2(

x
.        

      If we consider the Cartesian graphs of hyperbolic sine and cosine, we can notice their 

striking “resemblance” to the Cartesian graphs of polynomial functions; the function coshx 

resembles the function f(x) = x2k+1, kN, the function sinh x resembles the function            
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f(x) = x2k+1, kN. There remains the question if hyperbolic functions have some property 

similar to the ones of the polynomials. Again, the answer is the positive one; in the discrete 

concept (in the iteration theory), functions hyperbolic sine and cosine behave like 

polynomials. First of all we need to define necessary terms and state theorems. Let us restrain 

ourselves to a brief description. Details could be found in [10], [16]. 

 

2. HYPERBOLIC FUNCTIONS FROM THE ITERATION THEORY POINT OF 

VIEW 

 

Now we will deal with the discrete description of both above mentioned hyperbolic functions, 

their representation with the help of vertex graphs and its application. Let N be the set of all 

positive integers, N0 = N  {0}. The non-empty mapping f  of the set A (A  ) into itself will 

be called the transformation of the given set. For n  N0 let us define the n-th iteration of the 

transformation f as follows: f 0(x) = x, f 1(x) = f(x), f n(x) = (f o f n1)(x) for any x  A. Every 

transformation f of the set A determines the equivalence ~f  on A as follows: x ~f  y, if and only 

if there exists a pair of positive integers m, n such that f m (x) = f n(y). The blocks of the 

decomposition of the set A determined by the equivalence ~f are called orbits of the 

transformation f, in short f-orbits. The vertex graph of the transformation (function) f will be 

plotted in the following way: the elements of the set A will be plotted as points in the plain. 

We will join the element x to an element y with an arrow if and only if y = f(x). If f(x) = x (x is 

a fixed point of the function f), we will draw a loop around the point x. If the orbit contains 

k elements x1, ... xk with the property f(x1) = x2, f(x2) = x3, ..., f(xk1) = xk, f(xk) = x1, then we 

say that it is k-cyclic and the given k elements form the k-cycle.  From the point of view of the 

graph theory, the vertex graph of the function is the oriented graph, the orbits of the given 

function f are its weakly connected subgraphs. 

     Let f, g be functions defined on the same set A. Let for every x  A be gn = f for any n  N,  

n   2. Then the function g is called the n-th iterative root of the function f.  The problem of 

the existence and construction of the iterative root of the given function f is solved through the 

analysis of the vertex graph of this function f. It has been proved (see [16]), that the vertex 

graph of the iterative root g of the function f could be obtained by mating of the orbits of the 

function f. Precisely, the n-th iterative root of the function f exists if and only if the set of       

f-orbits can be decomposed to such blocks that the number of the orbits in every block is the 

divisor of the number n and the orbits in every block are n-mateable. 

     The ordered pair (A, f) will be called the mono-unary algebra (the symbols A, f have the 

above mentioned meaning). If (A, f), (B, g) are two mono-unary algebras, then we say that 

they are isomorphic and we write (A, f)   (B, g), if and only if there exists the bijective 

mapping h of the set A to the set B with the property h o f = g o h. The symbol o denotes the 

operation composition of mappings. Both functions f, g are in this case called the conjugated 

ones. The vertex graphs of functions of two isomorphic mono-unary algebras are “the same” 

from the point of view of the graph theory (if we do not take into account the labelling of the 

elements in the graphs). The component of the mono-unary algebra (A, f) will be called the 

pair, where the carrier set is the orbit of the function f, and the function is the restriction f on 

this orbit. Obviously, the components are minimal sub-algebras (with respect to the inclusion) 

of the given mono-unary algebra. Let us give an example of two real functions                      

f(x) = 2x(1 x), g(x) =  x2, for which there exists the bijection h: R  R, h(x) = 1 2x with the 

property h o f = g o h; so there holds (R, f)  (R, g).  

     Let us get back to the hyperbolic functions. The function f(x) = sinh x is bijective, while 

for the only real number x = 0 there holds f(x) = x. The vertex graph of the function sinh x 

contains innumerably many two-sidedly infinite chains (details can be found in [3], [5], [10]) 

and one fixed point x = 0; the vertex graph of the polynomial function f(x) = x3, whose 
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Cartesian graph  is analogical to the one of the function sinh x, contains also innumerably 

many two-sidedly infinite chains and three fixed points x1 = 0, x2 = 1, x3 = 1. The vertex 

graph of the function f(x)= sinh x is in Figure 2:  

0

1 2 3

 
                                                                            Fig. 2 

     Evidently, these functions are not conjugated due to the different number of the fixed 

points. However, if we add two fixed points to the vertex graph of the function sinh, then the 

newly defined function will be conjugated with the function x3. We will perform such 

modification through extending the real axis by adding two improper points  , , so we 

will define the set RN = R  {  , }. On the set RN we will define the function Sinh x as 

follows: Sinh(  ) =  , Sinh(  ) =  ; for all x  R there holds Sinh x = sinh x. Then 

the both considered mono-unary algebras are isomorphic, and we write (RN, Sinh) (R, x3). If 

we examine the iterative roots of the function sinh x, then obviously for every n  N, n  2 

there exists the iterative root of the order n. For the fixed point x = 0 there always applies        

f n(0) = 0, the other two-sidedly infinite chains can be mated for every chosen n. For n = 3, 

the mating is shown in Figure 3:  

 
                                                                          Fig. 3 

     Now, let us consider the function cosh x and the analogical polynomial function x2 + 1. 

Neither of these functions has any fixed point. Both of them are even functions, their vertex 

graphs are the same (only the labelling of the vertices differs). They contain one orbit in the 

shape of the chain with the minimal element 0, its successor is number 1, etc. and because the 

functions are even, on every positive element of the chain beginning with the vertex 1 there is 

mapped the vertex labelled with the opposite negative number. Further, they contain the 

vertex graphs of innumerably many orbits of the “similar” shape as the first orbit, whose 

minimal elements are pairs  k, where k  (1, 0)  (0, 1).The vertex graph is in Figure 4: 
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1-1

 
                                                                     Fig. 4 

     Mono-unary algebras formed of both functions are isomorphic, so we can write               

(R, cosh)  (R, x2+1). If we want to solve the problem of the existence and construction of 

the iterative roots, we can state that the function cosh x has iterative roots of all orders. One 

orbit containing the zero is mateable with other orbits for every permissible n, other orbits are 

mateable as well (because they are the same). For n = 3, the mating is illustrated by Figure 5:  

x1-x1 -x2 x2 0

Ω1 Ω2 Ω0

f(x1)

 
                                                                    Fig. 5 

     In order not to restrict ourselves only on the intuitive representation of the iterative roots of 

the function f(x) = cosh x with the help of the picture, we will show the formal description of 

mating of one orbit containing the zero with m1 other orbits for an arbitrary iterative root of 

the order m. Let us show that for any permissible m these orbits are m-mateable. We will 

denote the orbits: the orbit containing the zero will be denoted as 0, other orbits 1, ..., m1. 

The minimal non-negative element of the orbit 0 is 0, the minimal positive elements of other 

orbits will be labelled as x
1, x

2
,...., x

m-1
. Let us define the function g as follows:                      

g(x
i
) = x

i+1
, g(x

i
) = x

i+1 for i = 1,..., m-2, g(x
m-1

) = g(x
m-1

) = 0, g(0) = f(x
1
), further for      

p  N let us define g[f 
p
(x

i
)] = f 

p
(x

i+1
), g[ f 

p
(x

i
)] = f 

p
(x

i+1
) for i = 1,..., m-1, g[f 

p
(0)] = 

g[f 
p
0)] = f 

p+1
(x

1
). For the function g there applies g

m = f, so the orbit 0 is m-mateable with 

orbits 1, ..., m1  and the function  f = cosh x has iterative roots of all orders. Another 

possible description of iterative roots will be shown in the next section.  

 

3. ITERATIVE ROOTS OF ORDER TWO 

 

We have already shown that from the point of view of the iterative theory, the function 

hyperbolic cosine is analogic to the quadratic function x2 + 1. We will further “extend” this 
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analogy as follows: the simplest quadratic function is f(x) = x2. Under such analogy, the 

corresponding function should be the function q(x) = cosh x  1. We will show the 

correctness of such consideration, and with the help of the function q(x) we will show next 

interesting courses of our exploration, more suitable for university students due to its formal 

demands.    

     The orbit structure of the function q(x) = cosh x  1 is the same as the one at the function 

f(x) = x2. We will present the description of the quadratic real function f(x) = x2 using its 

vertex graph. The mono-unary algebra (R, f) has just two finite components with carrier sets 

K0 = {0}, K1 = {1, 1} with 1-element cycles {0}, {1} in the given order. Further, it is formed 

of uncountable many enumerable components Kt,, t  (0, 1).These infinite components Kt are 

isomorphic to each other, i.e. they have the same vertex graph. It is easy to show (see [8]) that 

this vertex graph is the same as at the mono-unary algebra (Z, ), where : Z  Z, (z) = z 

+2 for an odd z, (z) = z +1 for an even z. 

     Now let us proceed to the function q(x) = cosh x  1, whose vertex graph is analogic to the 

above mentioned simplest quadratic function. The equation cosh x  1 = x has an evident 

solution x0 = 0, and also an approximate solution x1 = 1,616. These are two fixed points of the 

function q; considering that the function q is the even one, there also holds that f(1,616) = 

1,616. Let us denote the number 1,616 as x2. The orbital structure of the function q(x) = cosh 

x  1 is as follows: one orbit (let us name it K0) is a 1-element one and contains the vertex 0, 

the second orbit is a 2-element one (let us name it K1), containing two vertices x1, x2 and is 

finished with the loop in the vertex x1. Further, the vertex graph contains uncountable many 

orbits, the base of which are two-sidedly infinite chains, where on each positive vertex there is 

mapped one vertex denoted by the opposite number (denoted analogically as K
t
, t  (0,1)). 

The vertex graph is shown in Figure 6.  

0

x1

x2

 
                                                                                     Fig. 6 

     In the further text we will use the monoid of the function´s endomorphism                      

q(x) = cosh x 1, denoted as End(R,q). According to the familiar definition, there holds 

End(R,q) = {h:R  R; h o q = q o h}; sometimes we also call it the centralizer of the 

transformation q in the full transformational monoid T(R). Now let us prove that the function 

q(x) = cosh x  1 has iterative roots of all orders, even in the set End(R, q). The set of all 

second iterative roots of the function q will be denoted


q . 

 

Theorem 1: (See [8]) Let q: R  R be the function defined by the formula q(x) = cosh x  1 

for every x  R. The equation f 
n = q has a solution in the monoid End(R,q) for every n  N. 
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Proof: From the description of the vertex graph of function g there applies (Fig.6) that it 

contains two finite components K0, K1 and uncountable many infinite countable components 

K
t
, t  (0,1). Let us consider the mono-unary algebra (R,q) in the form (R,q) = 

 1,0t

tt )q,K( ,  

where q
t = q│K

t for t  0,1, K
0 = {0}, K

1 
= {x1, x2}. Let  be the decomposition of the set 

system {K
t
; t(0,1)} to such blocks that every block of the decomposition  contains just n 

elements. Let us consider an arbitrary block of the decomposition  and let us denote its 

elements
1t

K  ,..., nt
K . For every pair of the indexes i, j {1,..., n} there holds that (

it
K ,

it
q ),  

(
jtK ,

jtq ) are isomorphic continuous mono-unary algebras. Let 
it

f :(
it

K ,
it

q ) (
1it

K


,
1it

q


) 

be the relevant isomorphism (a firmly chosen one from many isomorphisms of these 

components) for i = 1, 2,..., n1. Let 
nt

f :(
nt

K ,
nt

q )  (
11 tt q,K ) be the homomorphism 

defined by the relation 

nt
f (x) = cosh y  1, where y = ).x)(of...of()x()of...ooff(

1
t

1
t

1
ttt 1n112n1n




   

The mappings ,f
1t

..., 
1nt

f


are bijections, so their composition is the bijective one as well. 

The existence of the homomorphism 
nt

f follows from [12]. Now let us denote f: R  R as the 

function: f(0) = 0, f(x2) = f(x1) = x1, f(
it

K ) = 
it

f for every t
i  (0,1). From the definition of the 

function f it is evident that f(cosh x  1) = cosh f(x)  1 for every x  R, i.e. f  End(R,q). 

Now let us show that f 
n = q. Let x  R be an arbitrary number. If x  {x1, x2, 0}, then              

f 
n
(x) = cosh x  1 = q(x). Let x  R  {x1, x2, 0}. Then there exists a block {

it
K ; i =1,..., n} of 

the decomposition , for which x
n

1i

ti
K



,i.e. x
kt

K  for some suitable natural number k,              

1  k  n. At first, let us assume that k = 1; then f
n
(x)=

nt
f [(

11n tt of...of


)(x)] = cosh y  1, 

where  y = 1
tt )of...of(
11n




 o )of...of(

11n tt 
(x) = )of...oofof...of(

11n1n1 tt
1

t
1

t 

 (x) = x, 

so f
n
(x) = cosh x  1. Let 1  k  n. Then f

n
(x)=(

k1nn11k ttttt of...oofofof...of


)(x)
)(

                  

(
11k tt of...of

  )( nt
f (u)), where u = (

k1n tt of...of


)(x). According to the definition of 
nt

f there 

holds 
nt

f (u) = cosh[( 1
t

1
t 1n1

of...of



)(u)]  1 

)( 

 cosh[( 1
t

1
t 1k1

of...of



)(x)]  1. As

mt
f is the 

isomorphism of the mono-unary algebra (
mm tt q,K ) on the mono-unary algebra (

1m1m tt q,K


) 

for every m {1, 2,..., n  1}, the mapping  = 
11k tt of...of


 is the isomorphism of the mono-

unary algebra (
11 tt q,K ) on the algebra (

kk tt q,K ). With respect to the equalities ( ), (  ), 

we will get f
n
(x) =  (

nt
f (u)) = (cosh[1(x)]  1) =cosh( o [

-1
(x)])  1 = cosh x  1 = 

q(x), because also the function  is interchangeable with the function q. Thus the proof is 

finished. 

     In Theorem 1 we proved that for every n  N, n  2 there exists the n-th iterative root of 

the function q(x) = cosh x  1 interchangeable with this function. In the case of the iterative 

roots of the second order we will prove even more; we will prove that every function             

f: R  R, which is the solution of the equation f
2 = q, commutes with the function q. Firstly, 

let us give the auxiliary statements, the details see [8]. 
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Lemma 1: Let f 


q .Then there holds: f (K0  K
1
)  K

0  K
1
,  f ( 

)1,0(t

tK



)  
)1,0(t

tK



. 

Proof: From the shape of the orbits of the function q and from the formula f
2 = q = cosh x  1 

we immediately realize that for any function f 


q either f(0) = 0 (and then f(x2) = f(x1) = 

x1) or f(0) = x1 (which requires f(x2) = f(x1) = 0). This also implies that for x  R  { x1, x2, 0} 

there holds f(x)  R  { x1, x2, 0}. 

Lemma 2: Let f 


q . Then for every t (0,1) and every x  K
t there holds f(x) R Kt. 

Proof: The Lemma immediately results from the general theory of mating of orbits (see [16]). 

None of the considered orbits contains a cycle, so according to the general theory none of 

them can be self-mateable for any natural number n, n  2. Let us show the proof without 

using this theory. 

      We have already mentioned the fact that the vertex graph of the function q(x) = cosh x  1 

is the same as the one of the function p(x) = x2 (only the labelling of the elements is different). 

Therefore we can write (R, q)  (R, p). Now we will use this isomorphism and perform the 

proof for the function p instead for the function q. This will make the notation substantially 

easier. Without detriment to universality there holds f 


p          

     Let us assume that there exists a number x
0  K

t (for some t  (0, 1)) such that f(x
0
)  K

t
. 

Without detriment to universality we can assume that x
0  0. Then there exists n  N, n  2 

with the property f(x
0
) = 

n
2
0x . The case when x

0 =  
m

2
0 )x(f for a suitable m  1 implies 

f[f(x
0
)] =  

1m
2

0
2
0 )x(fx



 , so it is sufficient to consider the case when f(x
0
) is above x

0 in 

the ordering 
q
, i.e. f(x

0
) = 

n
2
0x . Then 2

0
2
0 x)x(f

n

  and there further holds
1n

2
0

2
0 x)x(f



 , so 

then
n1n2

2
0

2
0 x)x(f 



. Then we will get f 
2
(

1n2
2
0x



) = f(
n

2
0x ) = 

2
0x  

n2
2
0x = q(

1n2
2
0x



), which 

is the contradiction with the premise x
0 K

t
, f(x

0
)  K

t
. So there holds f(x

0
)  Kt. 

 

Theorem 2:  For every function f: R  R, which is the solution of the equation f 
2 = q, there 

holds f o q =   q o f, so


q  End(R,q). 

Proof: Let f 


q , x
0  R be arbitrary. Evidently, for x

0  {x1, x2, 0} with respect to    

Lemma 1 there holds the relation cosh[f(x
0
)]  1 = f(cosh x

0 
 1). Now let us consider the pair 

s, t  (0,1), for which x
0 
 K

t, f(x
0
)  K

s
; according to Lemma 2 s  t. There applies                 

f 
2
(x

0
) = cosh x

0 
 1, so cosh[f(x

0
)]  1 = f 

2
[f(x

0
)] = f[f 

2
(x

0
)] = f(cosh x

0
  1), therefore   

f(cosh x  1) = cosh f(x)  1  for every number x  R. 

     Theorem 2 can be expressed in the following way: Every solution f: R  R of the 

functional equation f 
2
(x) = cosh x  1 is the solution of the functional equation                 

f(cosh x  1) = cosh f(x)  1 . 

    Now let us describe formally the structure of functions f 


q .We will show that this 

structure can only be of two types. The corresponding Theorem 3 will be given without the 

proof owing to the length of the article (the proof can be found in [8]). However, from the 
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didactic point of view it is interesting that although the whole situation is absolutely evident 

from diagrams, it requires a quite complicated formal notation. This is one of the difficult 

aspects of the iteration theory when it is possible to decide relatively easily if the roots exist, 

but their formal notation can be considerably complicated. 

Definition: Let for two components K
i
, K

j of the mono-unary algebra (R, q) and for some 

function f 


q there hold: f(x)  K
j a f(y)  K

i for every pair (x,y)  Ki  Kj. This pair of 

components (K
i
, K

j
) will then be called the f-pair of components of the mono-unary algebra 

(R,q) corresponding to the function f. 

     Let us remark that such situation with two components is enforced because none of the 

components K
t
, t  (0,1) is a cyclic one, so according to the general theory of the iterative 

roots none of the components can be self-mateable (the relevant theory is again in [16]). As 

we discuss the second iterative roots, the only alternative is to mate the infinite orbits in pairs. 

Definition: Let (K
i
, K

j
) be the f-pair of components of the mono-unary algebra (R, q) 

corresponding to the function f, f 


q . Then the function f│K
i = f

(i,j)
: K

i  K
j 

and the 

function f│K
j = f

(j,i)
: K

j  Ki
 will be called connective functions with respect to the  f-pair of 

components (K
i
, K

j
). 

      It is evident that any component (K, f
K
) of the mono-unary algebra (R, f) can be 

constructed as follows: K = K
i 
 K

j
, where (K

i
, K

j
) is the f-pair of components corresponding 

to the function f 


q , f
K = f

(j,i)  f
(i,j)

, where f
(i,j)

, f
(j,i) are connective functions with respect 

to the f-pair of components (K
i
, K

j
). 

Theorem 3: Let us denote P = R  {x1, x2, 0} (the elements of the set {x1, x2, 0} are of the 

same meaning as in Theorem 1; they denote the elements of finite components of the vertex 

graph of the function q(x) = cosh x  1). Let f 


q . Let (K, f
K
) be any component of the  

mono-unary algebra (R, f), K  P. Then there exits the f-pair (K
i
, K

j
) of the components of the 

mono-unary algebra (R,q), for which either f
K is an even non-negative function or        f

K = 

f
(i,j)  f

(j,i) (under a convenient choice of indexes i, j), where f
(i,j) is an odd connective function 

and f
(j,i) is an even connective function with respect to  the f-pair of components    (K

i
, K

j
). 

Proof: Can be found in [8]. 

 

Remark: Both possible cases of the construction of the second iterative roots of the function q 

for infinite components Kt are depicted in the following Figure 7. On the left there is the case 

when fK is an even non-negative function, in the right part there is the case f
K = f(i, j)  f

(j, i )
, 

where  f
(i, j ) is an odd connective function and f(j, i) is an even connective function. 
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Fig. 7 

 

CONCLUSION 

 

The article gives the discrete description of two hyperbolic functions: the sine and the cosine. 

This non-traditional approach to these functions with the usage of their vertex graphs enables 

both the efficient formal description of the construction of their iterative roots, and the formal 

description of the second iterative root of the hyperbolic cosine. The text points out the fact 

that, while using the discrete approach to functions, it is possible to solve problems which, 

while using the classical continuous approach, would be solved with great difficulties (e.g. 

some types of equations of one variable). The choice of hyperbolic functions was not random 

as well; it demonstrates that these two functions, neglected while teaching mathematics at 

universities, offer a wide spectrum of topics for students´ individual projects and a great 

number of unexpected connections. Thus, they enable the necessary synthesizing approach to 

mathematics, which has already been pointed out in the introduction. In the conclusion, let us 

mention that the iterative theory of functions itself is by far more extensive and contains many 

more and deeper results and applications to the practice (e.g. in the area of numerical 

methods). Those interested in this theory could find further information in e.g. [10], [14], 

[15], [16], [17], [18], [19], [20]. 
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Introduction

We consider a system of discrete equations with delay of the form

∆x(k) = Bx(k − 1), (1)

where k ≥ 0, B = (bij)
2
i,j=1 is a constant matrix and x(k) = (x1(k), x2(k))T is

an unknown vector.
We suggest a method of solution based on a transformation of system (1) to a

system without delay. Systems of this form are often used in the theory of digital
filters ([1] – [3]).

1 Transformation of the system

Consider a system with delay (1). Since ∆x(k) = x(k + 1) − x(k), k ≥ 0, the
system (1) is equivalent with system

x(k + 1) = x(k) + Bx(k − 1). (2)

Define a new unknown vectors v1(k), v2(k), k ≥ 0, by formulas

v1(k) = x(k − 1), (3)

v2(k) = x(k). (4)
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Then v1(k) = v2(k − 1), v2(k + 1) = v2(k) + Bv1(k).

Moreover, define a 4-dimensional vector

v(k) = (v1(k), v2(k))T . (5)

Then

v(k + 1) = (v1(k + 1), v2(k + 1))T = (v2(k), v2(k) + Bv1(k))T

and system (2) can be transformed into a system without delay

v(k + 1) =

(
Θ E
B E

)
v(k), k ≥ 0 (6)

where E is a 2× 2 unit matrix and Θ is a 2× 2 null matrix.
Let a matrix A be defined as

A =

(
Θ E
B E

)
. (7)

Then system (6) can be written as

v(k + 1) = Av(k), k ≥ 0. (8)

Consider an initial condition of system (8)

v(0) = v0,

where v0 is an initial value for dependent vector v. Then, by the well-known for-
mula for the solution of non-delayed linear systems with constant matrices [4], we
have

v(k) = Akv(0), k ≥ 0. (9)

2 Formula for Ak, k ≥ 0

It is important to give a recommendation to find powers of matrices A in system
(9). The following theorem gives formulas to compute povers Ak through powers
of the matrix B.

Theorem 1. For powers of the matrix A, given by (7) it holds

Ak =

(
ak bk
ck dk

)
, k ≥ 0, (10)
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where ak, bk, ck, dk are 2× 2 matrices, a0 = E and

ak =
B

2k−2

b(k−2)/2c∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i, k ≥ 1, (11)

bk =
1

2k−1

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i, k ≥ 0, (12)

ck =
B

2k−1

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i, k ≥ 0, (13)

dk =
1

2k

bk/2c∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i, k ≥ 0. (14)

where b·c is the floor function.

Proof. We use method of mathematical induction.

I. Let k = 0. Then

A0 =

(
a0 b0
c0 d0

)
=

=


a0

1

2−1

−1∑
i=0

(
0

2i + 1

)
(E + 4B)i

B

2−1

−1∑
i=0

(
0

2i + 1

)
(E + 4B)i

1

20

0∑
i=0

(
1

2i + 1

)
(E + 4B)i

 =

(
E Θ
Θ E

)
.

II. Suppose the formula (10) holds for some k ≥ 0. We show then it holds also for
k + 1.
We use the relation

Ak+1 = Ak ·A = A ·Ak,

i.e. (
ak+1 bk+1

ck+1 dk+1

)
=

(
ak bk
ck dk

)
·
(

Θ E
B E

)
.

The rest of the proof is divided into four parts by formulas (11 – 14) for terms ak,
bk, ck, dk of matrix Ak. Then

II. a) ak+1 = bk ·B = B · bk =
B

2k−1

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i,
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so the formula (11) with k + 1 holds.

II. b) bk+1 = ak + bk,

we substitute formulas (11), (12) for expressions on each sides and in the following
we will modify the whole equation by simple operations without mentioning. So
we obtain

1

2k

bk/2c∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i

=
B

2k−2

b(k−2)/2c∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i +

1

2k−1

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i,

1

2k

bk/2c∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i =

(4B + E)− E

4 · 2k−2

b(k−2)/2c∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i

+
1

2k−1

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i,

1

2k

bk/2c∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i =

1

2k

b(k−2)/2c∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1

− 1

2k

b(k−2)/2c∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i +

1

2k−1

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i.

Multiplying the both sides by 2k we get
bk/2c∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i =

b(k−2)/2c∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1

−
b(k−2)/2c∑

i=0

(
k − 1

2i + 1

)
(E + 4B)i + 2 ·

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i,
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bk/2c∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i −

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i

=

b(k−2)/2c∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1 +

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i

−
b(k−2)/2c∑

i=0

(
k − 1

2i + 1

)
(E + 4B)i. (15)

To verify the last formula, we consider two cases: either k is even nor odd.

For even k we get from (15)
k/2∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i −

k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i

=

k/2−1∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1 +

k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i

−
k/2−1∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i,

k/2−1∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i +

(
k + 1

k + 1

)
(E + 4B)k/2

−
k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i =

k/2−1∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1

+

k/2−1∑
i=0

[ (
k

2i + 1

)
−
(
k − 1

2i + 1

) ]
(E + 4B)i.

Utilising formula (
m + 1

l

)
−
(
m

l

)
=

(
m

l − 1

)
(16)

we can transform the last expression into
k/2−1∑
i=0

[ (
k + 1

2i + 1

)
−
(

k

2i + 1

) ]
(E + 4B)i + (E + 4B)k/2
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=

k/2−1∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1 +

k/2−1∑
i=0

(
k − 1

2i

)
(E + 4B)i,

k/2−1∑
i=0

(
k

2i

)
(E + 4B)i −

k/2−1∑
i=0

(
k − 1

2i

)
(E + 4B)i + (E + 4B)k/2

=

k/2−1∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1,

k/2−1∑
i=0

[ (
k

2i

)
−
(
k − 1

2i

) ]
(E + 4B)i + (E + 4B)k/2

=

k/2−1∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1,

k/2−1∑
i=0

(
k − 1

2i− 1

)
(E + 4B)i + (E + 4B)k/2 =

k/2−1∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1.

If i = 0 the first combinative number on the left-hand side equals zero. Therefore
we can write
k/2−1∑
i=1

(
k − 1

2i− 1

)
(E + 4B)i + (E + 4B)k/2 =

k/2−1∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1,

k/2−1∑
i=1

(
k − 1

2i− 1

)
(E + 4B)i + (E + 4B)k/2 =

k/2∑
i=1

(
k − 1

2i− 1

)
(E + 4B)i,

k/2−1∑
i=1

(
k − 1

2i− 1

)
(E + 4B)i + (E + 4B)k/2

=

k/2−1∑
i=1

(
k − 1

2i− 1

)
(E + 4B)i +

(
k − 1

k − 1

)
(E + 4B)k/2

and finally the following parity obviously holds
k/2−1∑
i=1

(
k − 1

2i− 1

)
(E + 4B)i + (E + 4B)k/2

=

k/2−1∑
i=1

(
k − 1

2i− 1

)
(E + 4B)i + (E + 4B)k/2.
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For k odd we have from (15)
(k−1)/2∑

i=0

(
k + 1

2i + 1

)
(E + 4B)i −

(k−1)/2∑
i=0

(
k

2i + 1

)
(E + 4B)i

=

(k−3)/2∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1 +

(k−1)/2∑
i=0

(
k

2i + 1

)
(E + 4B)i

−
(k−3)/2∑

i=0

(
k − 1

2i + 1

)
(E + 4B)i,

(k−1)/2∑
i=0

[ (
k + 1

2i + 1

)
−
(

k

2i + 1

) ]
(E + 4B)i

=

(k−3)/2∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1 +

(k−3)/2∑
i=0

(
k

2i + 1

)
(E + 4B)i

+

(
k

k

)
(E + 4B)(k−1)/2 −

(k−3)/2∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i,

(k−1)/2∑
i=0

(
k

2i

)
(E + 4B)i =

(k−3)/2∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1

+

(k−3)/2∑
i=0

[ (
k

2i + 1

)
−
(
k − 1

2i + 1

) ]
(E + 4B)i + (E + 4B)(k−1)/2,

(k−1)/2∑
i=0

(
k

2i

)
(E + 4B)i =

(k−3)/2∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1

+

(k−3)/2∑
i=0

(
k − 1

2i

)
(E + 4B)i + (E + 4B)(k−1)/2,

(k−3)/2∑
i=0

(
k

2i

)
(E + 4B)i +

(
k

k − 1

)
(E + 4B)(k−1)/2 −

(k−3)/2∑
i=0

(
k − 1

2i

)
(E + 4B)i

−(E + 4B)(k−1)/2 =

(k−3)/2∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1,

(k−3)/2∑
i=0

[ (
k

2i

)
−
(
k − 1

2i

) ]
(E + 4B)i + k · (E + 4B)(k−1)/2
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−(E + 4B)(k−1)/2 =

(k−3)/2∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1,

and finally
(k−3)/2∑

i=0

(
k − 1

2i− 1

)
(E + 4B)i + (k − 1)(E + 4B)(k−1)/2

=

(k−3)/2∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1.

If i = 0 the first combinative number on the left-hand side is again equal to zero.
Therefore
(k−3)/2∑

i=1

(
k − 1

2i− 1

)
(E + 4B)i + (k − 1)(E + 4B)(k−1)/2

=

(k−3)/2∑
i=0

(
k − 1

2i + 1

)
(E + 4B)i+1,

(k−3)/2∑
i=1

(
k − 1

2i− 1

)
(E + 4B)i + (k − 1)(E + 4B)(k−1)/2

=

(k−1)/2∑
i=1

(
k − 1

2i− 1

)
(E + 4B)i,

(k−3)/2∑
i=1

(
k − 1

2i− 1

)
(E + 4B)i + (k − 1)(E + 4B)(k−1)/2

=

(k−3)/2∑
i=1

(
k − 1

2i− 1

)
(E + 4B)i +

(
k − 1

k − 2

)
(E + 4B)(k−1)/2,

(k−3)/2∑
i=1

(
k − 1

2i− 1

)
(E + 4B)i + (k − 1)(E + 4B)(k−1)/2

=

(k−3)/2∑
i=1

(
k − 1

2i− 1

)
(E + 4B)i + (k − 1)(E + 4B)(k−1)/2,

and the formula (12) with k + 1 holds.

II. c) ck+1 = dk ·B = B · dk =
B

2k

b(k)/2c∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i,
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so the formula (13) with k + 1 holds.

II. d) dk+1 = ck + dk,

we substitute formulas (13), (14) and we will again modify the whole equation
without mentioning of simple steps.

1

2k+1

b(k+1)/2c∑
i=0

(
k + 2

2i + 1

)
(E + 4B)i

=
B

2k−1

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i +

1

2k

bk/2c∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i,

1

2k+1

b(k+1)/2c∑
i=0

(
k + 2

2i + 1

)
(E + 4B)i

=
(4B + E)− E

4 · 2k−1

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i +

1

2k

bk/2c∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i,

1

2k+1

b(k+1)/2c∑
i=0

(
k + 2

2i + 1

)
(E + 4B)i =

1

2k+1

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i+1

− 1

2k+1

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i +

1

2k

bk/2c∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i.

Multiplying the both sides by 2k+1 we get
b(k+1)/2c∑

i=0

(
k + 2

2i + 1

)
(E + 4B)i =

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i+1

−
b(k−1)/2c∑

i=0

(
k

2i + 1

)
(E + 4B)i + 2 ·

bk/2c∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i,
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b(k+1)/2c∑
i=0

(
k + 2

2i + 1

)
(E + 4B)i −

bk/2c∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i

=

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i+1 +

bk/2c∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i

−
b(k−1)/2c∑

i=0

(
k

2i + 1

)
(E + 4B)i. (17)

For even k the previous parity (17) is
k/2∑
i=0

(
k + 2

2i + 1

)
(E + 4B)i −

k/2∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i

=

k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i+1 +

k/2∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i

−
k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i,

k/2∑
i=0

[ (
k + 2

2i + 1

)
−
(
k + 1

2i + 1

) ]
(E + 4B)i =

k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i+1

+

k/2∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i −

k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i.

Utilising the form (16) we get
k/2∑
i=0

(
k + 1

2i

)
(E + 4B)i =

k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i+1

+

k/2−1∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i +

(
k + 1

k + 1

)
(E + 4B)k/2

−
k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i,

k/2∑
i=0

(
k + 1

2i

)
(E + 4B)i =

k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i+1
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+

k/2−1∑
i=0

[ (
k + 1

2i + 1

)
−
(

k

2i + 1

) ]
(E + 4B)i + 1 · (E + 4B)k/2,

k/2∑
i=0

(
k + 1

2i

)
(E + 4B)i

=

k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i+1 +

k/2−1∑
i=0

(
k

2i

)
(E + 4B)i + (E + 4B)k/2,

k/2−1∑
i=0

(
k + 1

2i

)
(E + 4B)i +

(
k + 1

k

)
(E + 4B)k/2 −

k/2−1∑
i=0

(
k

2i

)
(E + 4B)i

−(E + 4B)k/2 =

k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i+1,

k/2−1∑
i=0

[ (
k + 1

2i

)
−
(
k

2i

) ]
(E + 4B)i + (k + 1)(E + 4B)k/2

−(E + 4B)k/2 =

k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i+1,

k/2−1∑
i=0

(
k

2i− 1

)
(E + 4B)i + k · (E + 4B)k/2 =

k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i+1.

If i = 0 the first combinative number on the left-hand side is again equal to zero.
k/2−1∑
i=1

(
k

2i− 1

)
(E + 4B)i + k · (E + 4B)k/2 =

k/2−1∑
i=0

(
k

2i + 1

)
(E + 4B)i+1,

k/2−1∑
i=1

(
k

2i− 1

)
(E + 4B)i + k · (E + 4B)k/2 =

k/2∑
i=1

(
k

2i− 1

)
(E + 4B)i,

k/2−1∑
i=1

(
k

2i− 1

)
(E + 4B)i + k · (E + 4B)k/2

=

k/2−1∑
i=1

(
k

2i− 1

)
(E + 4B)i +

(
k

k − 1

)
(E + 4B)k/2,

k/2−1∑
i=1

(
k

2i− 1

)
(E + 4B)i + k · (E + 4B)k/2
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=

k/2−1∑
i=1

(
k

2i− 1

)
(E + 4B)i + k · (E + 4B)k/2

and it holds.

For odd k the parity (17) has form
(k+1)/2∑

i=0

(
k + 2

2i + 1

)
(E + 4B)i −

(k−1)/2∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i

=

(k−1)/2∑
i=0

(
k

2i + 1

)
(E + 4B)i+1 +

(k−1)/2∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i

−
(k−1)/2∑

i=0

(
k

2i + 1

)
(E + 4B)i,

(k−1)/2∑
i=0

(
k + 2

2i + 1

)
(E + 4B)i +

(
k + 2

k + 2

)
(E + 4B)(k+1)/2

−
(k−1)/2∑

i=0

(
k + 1

2i + 1

)
(E + 4B)i =

(k−1)/2∑
i=0

(
k

2i + 1

)
(E + 4B)i+1

+

(k−1)/2∑
i=0

[ (
k + 1

2i + 1

)
−
(

k

2i + 1

) ]
(E + 4B)i,

(k−1)/2∑
i=0

[ (
k + 2

2i + 1

)
−
(
k + 1

2i + 1

) ]
(E + 4B)i + 1 · (E + 4B)(k+1)/2

=

(k−1)/2∑
i=0

(
k

2i + 1

)
(E + 4B)i+1 +

(k−1)/2∑
i=0

(
k

2i

)
(E + 4B)i,

(k−1)/2∑
i=0

(
k + 1

2i

)
(E + 4B)i −

(k−1)/2∑
i=0

(
k

2i

)
(E + 4B)i + (E + 4B)(k+1)/2

=

(k−1)/2∑
i=0

(
k

2i + 1

)
(E + 4B)i+1,

(k−1)/2∑
i=0

[ (
k + 1

2i

)
−
(
k

2i

) ]
(E + 4B)i + (E + 4B)(k+1)/2

=

(k−1)/2∑
i=0

(
k

2i + 1

)
(E + 4B)i+1,
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(k−1)/2∑
i=0

(
k

2i− 1

)
(E + 4B)i + (E + 4B)(k+1)/2 =

(k−1)/2∑
i=0

(
k

2i + 1

)
(E + 4B)i+1.

If i = 0 the first combinative number on the left-hand side is again equal to zero.
(k−1)/2∑

i=1

(
k

2i− 1

)
(E + 4B)i + (E + 4B)(k+1)/2 =

(k−1)/2∑
i=0

(
k

2i + 1

)
(E + 4B)i+1,

(k−1)/2∑
i=1

(
k

2i− 1

)
(E + 4B)i + (E + 4B)(k+1)/2 =

(k+1)/2∑
i=1

(
k

2i− 1

)
(E + 4B)i,

(k−1)/2∑
i=1

(
k

2i− 1

)
(E + 4B)i + (E + 4B)(k+1)/2

=

(k−1)/2∑
i=1

(
k

2i− 1

)
(E + 4B)i +

(
k

k

)
(E + 4B)(k+1)/2,

(k−1)/2∑
i=1

(
k

2i− 1

)
(E + 4B)i + (E + 4B)(k+1)/2

=

(k−1)/2∑
i=1

(
k

2i− 1

)
(E + 4B)i + (E + 4B)(k+1)/2,

the formula (13) with k + 1 holds and the theorem is proved.

3 Solution of the system (1)

Let an initial value of system (1) be given:

x(0) = x0, x(−1) = x−1, (18)

where x0 = (x01, x02)
T , x−1 = (x−10, x−11)

T are 2-dimensional constant vec-
tors.

Then the relevant initial value of transformed system (8) is, by (3) – (5),

v(0) = v0 = (x−1, x0)
T = (x−10, x−11, x01, x02)

T . (19)

The solution of initial problem (8), (19) is given by formula (9)

v(k) = Akv0 = Ak(x−1, x0)
T , k ≥ 0. (20)

Since
v(k) = (x1(k − 1), x2(k − 1), x1(k), x2(k))T , k ≥ 0,
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the solution x(k) = (x1(k), x2(k))T of system (1) satisfying initial data (18) can
be derived by separating the last two rows from (20).

It is easy to see from (20) that

x(k) = ckx−1 + dkx0, k ≥ 0,

and the following theorem holds.

Theorem 2. Solution of the initial-value problem (1), (18) is given by formula

x(k) =

(
B

2k−1

b(k−1)/2c∑
i=0

(
k

2i + 1

)
(E + 4B)i

)
·x−1

+

(
1

2k

bk/2c∑
i=0

(
k + 1

2i + 1

)
(E + 4B)i

)
·x0, k ≥ 0.

4 Conclusion

In the paper we solved an initial problem of system (1) with a single delay. The
original system is transformed into a system without delay. The solution was found
by the well-known formula, but we derived exact formulas for powers of the de-
fined matrix of linear terms. Thanks to this, it was possible to express explicitely
the solution of the initial problem.
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Introduction
In this article we will investigate the counting functions. Denote A(x) the number
of elements n ∈ A ⊆ N, where n ≤ x. We show the join between some properties
of A(x) and the series

∑
n∈A n

−1. Then we show the relationship between A(x)
and asymptotic density of the set A. Finally we apply the results for counting
function of the set of all pseudoprime numbers to base 2.

1 Basic Notions and Definitions
Let A = {a1 < a2 < · · · < an < · · · } ⊆ N = {1, 2, . . . }. Let A(x) denote the
number of elements of the set A less then or equal to x ∈ N i.e.

A(x) = |{n ∈ N : n ≤ x}|.
The lower asymptotic density of the set A ⊆ N is defined by d(A) = lim infx→∞
A(x)
x

and the upper asymptotic density is defined by d(A) = lim supx→∞
A(x)
x

. If
d(A) = d(A) = d(A), then d(A) is called the asymptotic density of the set A. It
is clear that d(A) ∈ 〈0, 1〉. For example d(N) = 1, d(P) = 0, d(S) = 6

π2 and
d(N2) = 0, where P denotes the set of all prime numbers, S denotes the set of all
square free numbers and N2 = {11, 22, 32, . . . } (see [1],[6] and [7]).

Recall the definition of symbol O. Let f, g are functions defined on R. We
have

f(x) = O(g(x))⇔ ∃M ∈ R :
f(x)

g(x)
≤M
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or

lim sup
x→∞

f(x)

g(x)
< +∞.

Next we denote

f(x) ∼ g(x)⇔ lim
x→∞

f(x)

g(x)
= 1.

The notion of pseudoprime number is defined as follows. The composite number
n is called pseudoprime number on base a if

an ≡ a (mod n).

For example the integer 341 is preudoprime number on base 2 (see [2]), because
341 = 31 · 11 and a = 2 then

210 ≡ 1 (mod 341)

2340 ≡ 1 (mod 341)

2341 ≡ 2 (mod 341)

This number was found in 1819. It can be shown that the set of all pseudoprime
numbers is infinite. Paul Erdős in 1950 for the counting function proved the fol-
lowing inequality (see [3])

P2(x) < 2x exp

{
−1

3
log

1
4 x

}
.

2 Main Results
Let us recall the relationship between the convergence of series of inverse values
from A and asymptotic density of the set A. We need the following Lemma.

Lemma 1. Let a1 ≥ a2 ≥ · · · an ≥ · · · is a sequence of real numbers. Let
limn→∞ an = 0 and αn (n = 1, 2, . . . ) are non-negative real numbers. If the
series

∑∞
n=1 αnan converges then limn→∞(α1 + α2 + · · ·+ αn)an = 0.

Proof. By using the Cauchy-Bolzano convergence criterion i.e. for all ε > 0 there
exists m ∈ N that for all n > m the inequality αm+1am+1+ · · ·+αnan < ε holds.
From monotonicity of (an)∞ we have

an(αm+1 + · · ·+ αn) ≤ αm+1am+1 + · · ·+ αnan < ε

for n > m. Hence limn→∞ an(αm+1 + · · · + αn) = 0 for fixed m. Therefore
limn→∞(α1 + · · ·+ αn)an = 0.
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Now we present the sufficient condition to convergence of subseries of har-
monic series along a set A.

Theorem 2. Let A = {n1 < n2 < · · · < nk < · · · }. If
∑∞

k=1 n
−1
k < ∞ then

d(A) = 0.

Proof. Set the αnk = 1 for k = 1, 2, . . . and αm = 0 for m 6= nk. On the base
of Lemma 1 limn→∞

α1+α2+···+αn
n

= 0 and A(n) = α1 + α2 + · · ·+ αn. Then we
have limn→∞

A(n)
n

= 0 i.e. d(A) = 0.

Remark 3. The converse of Theorem 2 is not true. For instance the set of all
prime numbers has asymptotic density equals to 0, but

∑∞
k=1 p

−1
k = +∞, where

P = {p1 < p2 < · · · < pk < · · · }.

Theorem 4. If A(x) = O
(

x
logα x

)
, α > 1, then

∑
a∈A a

−1 < +∞.

Proof. Let A = {a1 < a2 < · · · < an < · · · }. By assumption there exist M > 0
such that A(x) ≤ M · x

logα x
. Put x = an then A(x) = n ≤ M · x

logα x
. Hence

1
an
≤M · 1

n logα an
. Because an ≥ n (n = 1, 2, . . . ) is logα an ≥ logα n for n > n0,

therefore
1

an
≤M · 1

n logα n
.

The sequence
∑∞

n=2
1

n logα n
converges for α > 1. Hence the series

∑∞
n=1 a

−1
n also

converges.

From Theorems 2 and 4 we have the following corollary.

Corollary 5. If A(x) = O
(

x
logα x

)
, α > 1, then d(A) = 0, where A = {a1 <

· · · < an < · · · }.

We show that the converse of Theorem 4 is not true.

Theorem 6. Let α > 1 then there exists a set A = {a1 < · · · < an < · · · } such
that

∑∞
n=1 a

−1
n < +∞ and A(x) 6= O

(
x

logα x

)
.

Proof. Let β ∈ R+, such that 1 < β < α. Create a set A in the following way:
A = ∪∞k=1Ak where

Ak = {2k + 1, 2k + 2, . . . , 2k + [tk2
k]}
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and tk = 1
kβ

for k = 1, 2, . . . . Since β > 1 and∑
j∈Ak

j−1 ≤ 1

2k
[tk2

k] ≤ tk =
1

kβ

the series
∑

j∈A j
−1 converges. Next we show that A(x) 6= O

(
x

logα x

)
. Suppose

that A(x) = O
(

x
logα x

)
. Then there exists M > 0 such that A(x) ≤ M · x

logα x
.

Specially for x = 2k + [tk2
k] we have

k∑
j=1

[tj2
j] ≤M · 2k + [tk2

k]

logα (2k + [tk2k])

therefore
k∑
j=1

[tj2
j] ≤M · 2k + [tk2

k]

logα (2k(1 + tk))
.

The left side is greater then tk2k logα(2k(1 + tk)) hence

kα(logα 2)tk2
k ≤M2k(1 + tk)

(logα 2)
kα

kβ
≤M(1 +

1

kβ
)

(logα 2)kα ≤M(kβ + 1).

The last inequality does not hold for k →∞, because by assumption α > β.

In the next we will investigate the counting function on base 2. The Erdős’s
equality says that (cf. [3])

P2(x) = O
(
xe−

1
3

4√log x
)
, (1)

where P2(x) denotes the number of all pseudoprimes to base 2 less then or equal
to x. We will show that

P2(x) = O

(
x

logα x

)
, α > 0. (2)

From (1) exists K > 0 such that P2(x) ≤ K · x

e
1
3

4√log x
.
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Let we show that the inequality
x

e
1
3

4√log x
≤ x

logα x
, α > 0.

It is clear that the logα x ≤ e
1
3

4√log x, α > 0. It is enough to represent the right
side of inequality with Taylor series. Otherwise the following inequalities hold:

3α log log x ≤ (log x)
1
4 , α > 0

log logα x ≤ 1

3
4
√

log x log e

logα x ≤ e
1
3

4√log x.

The last inequality holds for sufficiently large x. Hence the (2) holds. From
Theorem 4 and Corollary 5 we have the following theorem.

Theorem 7. a) The series of inverse values of pseudoprimes to base 2 con-
verges.

b) The asymptotic density of the set of all pseudoprimes to base 2 is equal to
0.

The condition b) of theorem above is proven in [4] by another way. Finally we
show an important property of P2(x).

Theorem 8. We have

lim
x→∞

P2(x)
x

log x

= 0.

Proof. Because there exist K > 0 and ε > 0, from (2) we have

P2(x) log x

x
≤ Kx

(log x)1+ε
.
log x

x
=

K

(log x)ε
.

Since limx→∞
K

(log x)ε
= 0 therefore limx→∞

P2(x) log x
x

= 0.

The Theorem 8 gives an important information of P2(x) i.e. the function P2(x)
grows more slowly with x → ∞ than x

log x
. We see that the analogy with prime

number theorem does not hold. It says that limx→∞
π(x) log x

x
= 1, where π(x) is

the prime-counting function.
Easier problems regarding this issue can be an appropriate topic in aiming the

course N422S1_4B Semestral Project I as a research activity for students attend-
ing the 4th semester.
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Conclusion
We showed that if the counting function A(x) of the set A i.e. A(x) =

∑
n≤x 1,

n ∈ A has some propreties (see Theorem 4), then the series
∑

n∈A a
−1
n converges.

This result we applied to the counting function of the set of all pseudoprime num-
bers to base 2.
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Abstract: In previous papers [4,5] the plastic deformation of Cd single crystals has been 

investigated and in this way both the thermally activated and macroscopic parameters have 

been obtained. The present paper deals with the creep behavior of Cd + 0.44 at. % Zn alloy 

single crystals. Contrary to the Cd single crystals discontinuous creep curves have been 

observed, which do not occur at 78 K. The low – temperature limit of this effect is 130K 

 approximately. The characteristics of these discontinuous creep curves are discussed on the 

assumption that the Portevin – Le Chatelier effect is acting in the Cd + 0.44 at. %  Zn Alloy.  

 

Keywords: metals, deformation, yield point, repeated creep curve, Portevin – Le Chatelier 

effect. 
 

 

INTRODUCTION  

 

When certain materials such as mild steel or duralumin are deformed in tension, it is found 

that the stress – strain curve is not smooth, but shows marked irregularities, with negative 

slopes occurring at or near the initial yield on the curve. The actual shape of the stress - strain 

curve is dependent, to some extent, on the type and characteristics of the tensile testing 

machine used; nevertheless one may include all cases where dd is negative as example of 

yield point effects deserving attention [1]. Tensile machines are divided into two types, the so 

– called “soft” and “hard” machines. The effects of machine rigidity may be simply illustrated 

by reference to Fig 1a. Here, the tensile specimen shown is imagined to have a Young´s 

modulus E, while the machine and supporting members have an effective spring constant K. 

Thus, under a load L, the extension of the system is L/K + L.l/(S.E) where l is the specimen 

length and S its cross section. If the specimen extends by an amount dl the overall extension is 

constant; the load measured changes by dL so that 

 

0
.

.

.

1











ES

dlL

ES

l

K
dL        (1) 

 

so that 

 

l
K

ES

dL

L

dL




.

        (2) 

 

For certain dl further follows from this relationship that when K → 0 (very soft machine), is 

0
L

dL
. 
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The spring constant K of the machine may be determined quite simply by a dial gauge using a 

heavy specimen or by determining of the shape of the elastic region of the load – time curve, 

which, as the above analysis shows, will always be less than the normally accepted modulus 

of elasticity 

 

   
  

  Fig.1 (a) Elastic elements of a tensile machine.  

                    (b) Effect of the spring constant K on the stress – strain curve [1]. 

 

The elastic parameters of the machine will also affect the magnitude of the yield point drop. 

As the effective stiffness of the machine decreases the load relaxation decreases and will 

become less abrupt, until, as shown in Fig. 1(b), only a rounded yield is seen. Here the stress 

barely falls below the nucleation stress, and the Luders band will be forced through the 

specimen at much higher velocities [1]. 

The yield points observed with hard machines are found to take many different forms of 

instability, dependent on material and testing temperature. Fig. 2 shows a series of successive 

yield points obtained in mild steel at elevated temperatures, at about 500 K. The multiple 

yield points seen here as deformation begins are the result of interrupted motion of the Luders 

band along the specimen [2]. The movement of dislocations near the band front becomes 

locked – a phenomenon known as strain hardening – and as result the stress has to rise to 

release the band from again. The ductility is thereby reduced – a phenomenon known as blue 

brittleness – a result of simultaneous straining and ageing. 

Fig 3 shows a case of austenitic stainless steel at high temperatures [3]. Here the general stress 

level continues to rise as deformation proceeds – and in certain cases the curves are smooth at 

the commencement of yield. As the strain increases, serrations build up slowly and reach their 

maximum at ultimate tensile strength. This mode, characteristic of duralumin and bronzes, 

nickel – hydrogen and even some magnesium – base alloys is properly called the Portevin – 

Le Chatelier effect  after its discoverers (1923) who first noted it in duralumin.    
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  Fig. 2. Stress – strain curves for polycrystalline mild steel at elevated 

                        temperature [2] 

                                           

 

The name of the effect is often applied to curves such as Fig. 2 and 3, although, as we shall 

see, the mode of locking may differ [1]. 

The purpose of the present work is to show that similar phenomenon can be observed also in 

creep deformation of Cd-Zn single crystal alloys. 

 

 

1. EXPERIMENTAL PROCEDURE 

 

To measure the characteristics of the transient creep of Cd + 0.44 at. % Zn alloy single 

crystals equivalent incrementally loading method (the sample is gradually loaded with 

increments in constant time interval 10 minutes) and experimental equipment as for 

measurements of pure Cd single crystals have been used [4,5].  

The single crystals of that alloy were the same orientation 0 = 49
o
 and 

o
. The samples 

of the cylindrical form (3.9 mm of diameter and about 35 mm of length) were prepared at the 

Department of Solid State Physics of the Charles University, Prague.   
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 Fig. 3. Stress – strain curves for austenitic stainless steels at 770 K [3] 

 

 

2.  MACROSCOPIC CHARACTER OF TRANSIENT CREEP 

 

Contrary to the Cd single crystals a considerable change in creep behavior of Cd + 0.44 at.% 

Zn alloy has been observed. The typical creep curve for pure Cd single crystals is illustrated 

in Fig.4. The change of he creep curves is shown by a special discontinuous “step like” shape 

of the creep curves (Fig. 5). As shown in the figure, an abrupt elongation of the specimen 

about the s length always occurs at a constant resolved shear stress value after a certain time 

interval t, where the length of he given specimen keeps at a constant value till the further 

abrupt elongation.. 

A similar behavior of these discontinuous flows in creep was observed at 238 K and 202 K. 

At temperature 78 K the “step like” curve shape of creep curves however has not appeared at 

all. On the basis of this fact we can conclude on the occurrence of the Portevin –Le Chatelier 

effect in this alloy. Since this effect occurs as a rule in a certain region of temperatures and 

shear stresses only we tried to determine the lower temperature level of this effect for the 

alloy mentioned at least approximately. Decreasing continually the temperature (by means of 

a petroleum ether bath, cooled by liquid nitrogen), the original “step like” shape of the creep 

curves has become continuous at temperature T ~ 130 K and at resolved shear stress  = 200 

p.mm
-2

 (Fig. 6) 

Then the bath was heated again, until the continuous shape of creep curves changes into “step 

like” one. This change occurs at T  230 K. The increase in the “transition” temperature is 

probably due to increase of the resolved shear stress to the value  = 420 p.mm
-2

 (Fig. 7). 

The “step like” curves can be characterized by the length of the “step” s and the time 

between two “steps” t (Fig. 5). At room temperature the length of the “step” is practically 

independent of time in one creep segment. The value of s however depends on the resolved 

shear stress. Typical examples of time dependence of the s are shown in Fig. 8. It is evident, 

that during one creep segment s is approximately constant. Fig.9 shows the stress 
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dependence of the average length of “step” s . It is obvious that s  has a maximum value 

for a certain resolved shear stress (   90 p.mm
-2

 ). 

The time interval between two “steps” t during one creep segment increases in dependence 

on  time, except the region about   90 p.mm
-2

, where the course of the dependence t = 

t(t) is not clear (Fig.10). 
 

       
      Fig.4. A typical creep curve for pure Cd single crystals ( transient creep, 

     T = 295 K,  = 776 p.mm
-2

, registered by means of recorder with 

     zero suppresion [4]. 
 

      
 

    Fig.5. Discontinuous creep curve for Cd + 0.44 at. % Zn alloy single crystals. 

    ( T  = 295 K,  = 745 p.mm
-2

 registered by means of recorder with zero 

   suppression ) 
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  Fig.6. Transition from the „step like“ creep curves to the continuous ones 

  For the Cd + 0.44 at. % Zn alloy single crystals ( T = 130 K, 

   = 200  p.mm
-2

, registered by means of recorder with zero suppresion) 
 
 

 
 

Fig. 7. Transition from the continuous creep curves ton the “step like” ones 

 for the Cd + 0.44 at % Zn alloy single crystals ( T = 230 K, 

  = 420 p.mm
-2

, registered by means of recorder with zero suppresion) 
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 Fig.8. Dependence of the length of the „step“ s on time 
        
 
 

 
 

 Fig.9. Dependence of the average length of the “step” s  on the resolved 

           shear stress .  
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 Fig.10. Dependence of the interval between two steps t on time t. 

 

 

CONCLUSION 

 

From the results of our measurements it follows that a new effect appears which is 

characterised by a typical “step like” shape of the creep curves. As shown by measurements, 

this effect appears in a certain interval of temperatures and resolved shear stresses. Hence we 

conclude on the Portevin – Le Chatelier effect occurring in the alloy. 

The Portevin –Le Chatelier effect mostly observed by tensile tests on many interstitial and 

substitutional alloys becomes evident so that the stress – strain curve in a certain region of the 

resolved shear stress and temperature exhibits a characteristic jerky shape. Cottrell [6] 

assumes this effect to be due to an interaction of solute atoms and vacancies with dislocations. 

For the case of the creep it has not been investigated up to now,  and for Cd – Zn alloys single 

crystals has not been investigated neither in tensile tests [7,8]. 

The average length of the “step” can be caused by the blocking dislocations by great number 

of solute atoms (Zn). This number of atoms depends on concentration of vacancies, which is 

proportional to the strain  ( cv  10
-4

 ) and/or to the resolved shear stress. Hence it follows 

that with increasing   s  ought to increase too. This effect has been observed up to a certain 

value of the resolved shear stress  = 90 p.mm
-2

 only. Besides the increasing number of 

vacancies, however, we must also take into account the increase of the dislocation density 

with increasing resolved shear stress. At a greater number of dislocations (and at a constant 

density of solute atoms), it belongs to one dislocation a smaller number of blocking atoms, the 

blocking of dislocations is reduced and therefore s  decrease. In consequence of this 

decrease the creep curve becomes a continuous shape. 
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Abstract: This contribution, which is a follow-up to author's paper [1] and [2]
deals with the series of reciprocals of the quadratic polynomials with different
positive integer roots. We derive the formula for the sum of this series and ver-
ify it by some examples evaluated using the basic programming language of the
computer algebra system Maple 16. This contribution can be an inspiration for
teachers of mathematics whose are teaching the topic In�nite series or as a sub-
ject matter for work with talented students.

Keywords: Sequence of partial sums, telescoping series, harmonic number, com-
puter algebra system Maple.

Introduction and basic notions
Let us recall the basic terms. For any sequence {ak} of numbers the associated
series is de�ned as the sum

∞∑

k=1

ak = a1 + a2 + a3 + · · · .

The sequence of partial sums {sn} associated to a series
∞∑

k=1

ak is de�ned for each

n as the sum of the sequence {ak} from a1 to an, i.e.

sn =
n∑

k=1

ak = a1 + a2 + · · ·+ an .
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The series
∞∑

k=1

ak converges to a limit s if and only if the sequence of partial sums

{sn} converges to s, i.e. lim
n→∞

sn = s. We say that the series
∞∑

k=1

ak has a sum s

and write
∞∑

k=1

ak = s.

The telescoping series is any series where nearly every term cancels with a
preceding or following term, so its partial sums eventually only have a �xed num-
ber of terms after cancellation. Telescoping series are not very common in math-
ematics but are interesting to study. The method of changing series whose terms
are rational functions into telescoping series is that of transforming the rational
functions by the method of partial fractions.

For example, the series
∞∑

k=1

1

(k − 1)(k − 2)
, where obviously the summational

index k 6= 1, 2, has the general k th term ak =
1

(k − 1)(k − 2)
=

A

k − 1
+

B

k − 2
.

After removing the fractions we get the equation 1 = A(k − 2) + B(k − 1).
For k = 1 we get A = −1 and for k = 2 we obtain B = 1, so we have
ak = −1/(k − 1) + 1/(k − 2) = 1/(k − 2) − 1/(k − 1). After that we ar-
range the terms of the nth partial sum sn = a3 +a4 + · · ·+an in a form where can
be seen what is cancelling. Then we �nd the limit of the sequence of the partial
sums sn in order to �nd the sum s of the in�nite telescoping series as s = lim

n→∞
sn.

In our case we get

sn =
(

1
1
− 1

2

)
+
(

1
2
− 1

3

)
+· · ·+

(
1

n− 3
− 1
n− 2

)
+
(

1
n− 2

− 1
n− 1

)
= 1− 1

n− 1
.

So we have s = lim
n→∞

(
1− 1

n− 1

)
= 1.

1 The sum of the series of reciprocals of the quadratic
polynomial with different positive integer roots

Let us consider the series of reciprocals of the normalized quadratic polynomials
of the form k2 − (a+ b)k + ab = (k − a)(k − b) with two different integer roots
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0 < a < b, i.e. the series
∞∑

k=1
k 6=a,b

1

(k − a)(k − b) , (1)

and let us determine its sum s(a, b).
This series can split into three parts � two �nite series and the in�nite one, so

we have

s(a, b) =
a−1∑

k=1

1

(k − a)(k − b) +
b−1∑

k=a+1

1

(k − a)(k − b) +
∞∑

k=b+1

1

(k − a)(k − b) .
(2)

We differentiate four following cases:

1. If a = 1 and b = 2, then both �nite parts of the series (2) are not de�ned
and we have

s(1, 2) =
∞∑

k=3

1

(k − 1)(k − 2)
= 1 ,

as we derived in the example mentioned in Introduction.

2. If a = 1 and b ≥ 3, then the �rst �nite part of the series (2) is not de�ned
and we get

s(1, b) =
b−1∑

k=2

1

(k − 1)(k − b) +
∞∑

k=b+1

1

(k − 1)(k − b) .

3. If a ≥ 2 and b = a + 1, then the second �nite part of the series (2) is not
de�ned and we obtain

s(a, a+ 1) =
a−1∑

k=1

1

(k − a)(k − a− 1)
+

∞∑

k=a+2

1

(k − a)(k − a− 1)
.

4. If a ≥ 2 and b ≥ a+ 2, then there remain all three parts of the series (2) and
we have

s(a, b) =
a−1∑

k=1

1

(k − a)(k − b)+
b−1∑

k=a+1

1

(k − a)(k − b)+
∞∑

k=b+1

1

(k − a)(k − b) .
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We concentrate on the last form for expressing the sum s(a, b), where a ≥ 2,
b ≥ a+ 2, and determine this sum using the equality

1

(k − a)(k − b) =
1

a− b
(

1

k − a −
1

k − b
)
.

The sums s(1, b) and s(a, a+1) corresponding with items 2. and 3. we give further
in Corollary 1

The sum s′ of the �rst �nite part of the series (2) is

s′ =
1

a− b
[(

1

1− a −
1

1− b
)

+

(
1

2− a −
1

2− b
)

+

(
1

3− a −
1

3− b
)

+ · · ·

· · · +

(
1

−3
− 1

a− b− 3

)
+

(
1

−2
− 1

a− b− 2

)
+

(
1

−1
− 1

a− b− 1

)]
=

=
1

a− b
[
−
(

1

1
+

1

2
+

1

3
+ · · ·+ 1

a− 3
+

1

a− 2
+

1

a− 1

)
+

+

(
1

b− a+ 1
+

1

b− a+ 2
+

1

b− a+ 3
+ · · ·+ 1

b− 3
+

1

b− 2
+

1

b− 1

)]
=

=
1

b− a
[
Ha−1 − (Hb−1 −Hb−a)

]
=
Hb−a +Ha−1 −Hb−1

b− a ,

where Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
is the nth harmonic number, H0 being de�ned

as 0. First ten values of the harmonic numbers are stated in the following table:

n 1 2 3 4 5 6 7 8 9 10

Hn 1
3

2

11

6

25

12

137

60

49

20

363

140

761

280

7 129

2 520

7 381

2 520

Table 1: First ten values of the harmonic numbers

Basic information about harmonic numbers can be found e.g. in the web-site [3]
or in [4], interesting information are included e.g. in the paper [5].

Now, let us determine the sum s′′ of the second �nite part of the series (2). We
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get

s′′ =
1

a− b
[(

1

1
− 1

a− b+ 1

)
+

(
1

2
− 1

a− b+ 2

)
+

(
1

3
− 1

a− b+ 3

)
+ · · ·

· · · +

(
1

b− a− 3
− 1

−3

)
+

(
1

b− a− 2
− 1

−2

)
+

(
1

b− a− 1
− 1

−1

)]
=

=
1

a− b
[(

1

1
+

1

2
+

1

3
+ · · ·+ 1

b− a− 3
+

1

b− a− 2
+

1

b− a− 1

)
+

+

(
1

1
+

1

2
+

1

3
+ · · ·+ 1

b− a− 3
+

1

b− a− 2
+

1

b− a− 1

)]
=

2Hb−a−1

a− b .

Finally, let us express the nth partial sum sn of the in�nite part of the series (2).
We have

sn =
1

a− b
[(

1

b− a+ 1
− 1

1

)
+

(
1

b− a+ 2
− 1

2

)
+

(
1

b− a+ 3
− 1

3

)
+ · · ·

+

(
1

n−a−2
− 1

n− b−2

)
+

(
1

n−a−1
− 1

n− b−1

)
+

(
1

n−a −
1

n− b
)]
.

It is evident that the 1st summand in the 1st parenthesis
(

1

b− a+ 1
− 1

1

)
can-

cels with the 2nd summand in the (b − a + 1)st parenthesis
(

1

−2a+ 2b+ 1
−

1

−a+ b+ 1

)
. Further, the 1st summand in the 2nd parenthesis

(
1

b− a+ 2
− 1

2

)

cancels with the 2nd summand in the (b−a+2)nd parenthesis
(

1

−2a+ 2b+ 2
−

1

−a+ b+ 2

)
, and so forth, up to the 1st summand in the (b − a)th parenthesis

(
1

2b− 2a
− 1

b− a
)

cancels with the 2nd summand in the (2b−2a)th parenthesis
(

1

3b−3a
− 1

2b−2a

)
. In the (b−a+1)st parenthesis

(
1

2b−2a+ 1
− 1

b−a+ 1

)

and in the several following parentheses cancel both summands, so in the begin-
ning of the expression of the nth partial sum sn remains after cancelling the sum

− 1

1
− 1

2
− · · · − 1

b− a− 1
− 1

b− a .
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Analogously, in the ending of the nth partial sum sn, the 2nd summand in
the (n − b)th parenthesis

(
1

n− a −
1

n− b
)

cancels with the 1st summand in

the (n + a − 2b)th parenthesis
(

1

n− b −
1

n+ a − 2b

)
. Further, the 2nd sum-

mand in the (n − b − 1)st parenthesis
(

1

n− a− 1
− 1

n− b− 1

)
cancels with

the 1st summand in the (n− a− 1)st parenthesis
(

1

n− 1
− 1

n− a− 1

)
, and so

forth, up to the 2nd summand in the (n− 2b+ a+ 1)st parenthesis
(

1

n− b+ 1
−

1

n− 2b+ a+ 1

)
cancels with the 1st summand in the (n− 3b+ 2a+ 1)st paren-

thesis
(

1

n− 2b+ a+ 1
− 1

n− 3b+ 2a+ 1

)
. In the (n − 2b + a)th parenthesis

(
1

n− b −
1

n−2b+a

)
and in the several preceding parentheses cancel both sum-

mands, so in the ending of the expression of the nth partial sum sn remains after
cancelling the sum

1

n− b+ 1
+

1

n− b+ 2
+ · · ·+ 1

n− a− 1
+

1

n− a .

The sum of the in�nite part of the series (2) is s′′′ =

=
1

a− b lim
n→∞

(
− 1

1
− 1

2
−· · ·− 1

b−a +
1

n− b+ 1
+ · · ·+ 1

n−a−1
+

1

n−a
)

=

=
1

b− a
(

1 +
1

2
+ · · ·+ 1

b− a− 1
+

1

b− a
)

=
Hb−a
b− a .

Altogether, for a ≥ 2, b ≥ a+ 2 we get the sum s(a, b) of the series (1) in the
form

s(a, b) = s′ + s′′ + s′′′ =
Hb−a +Ha−1 −Hb−1

b− a +
2Hb−a−1

a− b +
Hb−a
b− a ,

so we derived this statement:
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Theorem 1 The series
∞∑

k=1
k 6=a,b

1

(k − a)(k − b) , where a ≥ 2 and b ≥ a + 2 are

positive integers, has the sum

s(a, b) =
1

b− a (Ha−1 −Hb−1 + 2Hb−a − 2Hb−a−1) , (3)

where Hn is the nth harmonic number.

Corollary 1 From Theorem 1 and from the reasoning above it follows:
1. For the sum s(a, b) above it obviously holds: s(a, b) = s(b, a) .

2. For b ≥ 3 it holds: s(1, b) =
1

b− 1
(Hb−1 − 2Hb−2) .

3. For a ≥ 2 it holds: s(a, a+1) = Ha−1−Ha+2 , whence lim
a→∞

s(a, a+1) = 2.

4. For a = 1, b = 2 it holds: s(1, 2) = H1 = 1 .

Remark 1 Let us note, that the formula (3) includes also the three above special
cases. We can so state that for arbitrary two different positive integer roots a < b

of the normalized quadratic polynomial (k−a)(k−b) the series
∞∑

k=1
k 6=a,b

1

(k−a)(k− b)
has the sum

s(a, b) =
1

b− a (Ha−1 −Hb−1 + 2Hb−a − 2Hb−a−1) .

Example 1 Using i) nth partial sum, ii) formula (3) calculate the sum of the
series ∞∑

k=1

1

(k − 3)(k − 8)
.

i) The series
∞∑

k=1

1

(k − 3)(k − 8)
, where a = 3, b = 8, has, using the equality

1

(k − a)(k − b) =
1

a− b
(

1

k − a −
1

k − b
)

, the nth partial sum (where k 6= 3, 8,
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i.e. k = 1, 2, 4, 5, 6, 7, 9, 10, 11, . . . , n− 2, n− 1, n)

sn =

(
1

(−2)(−7)
+

1

(−1)(−6)

)
+

(
1

1(−4)
+

1

2(−3)
+

1

3(−2)
+

1

4(−1)

)
+

+

(
1

6 · 1 +
1

7 · 2 +
1

8 · 3 + · · ·+ 1

(n− 5)(n− 10)
+

1

(n− 4)(n− 9)
+

+
1

(n− 3)(n− 8)

)
=

=

(
1

14
+

1

6

)
+

(
−1

4
− 1

6
− 1

6
− 1

4

)
+

1

3− 8

[(
1

6
− 1

1

)
+

(
1

7
− 1

2

)
+

+

(
1

8
− 1

3

)
+

(
1

9
− 1

4

)
+

(
1

10
− 1

5

)
+

(
1

11
− 1

6

)
+ · · ·

· · · +

(
1

n− 8
− 1

n− 13

)
+

(
1

n− 7
− 1

n− 12

)
+

(
1

n− 6
− 1

n− 11

)
+

+

(
1

n− 5
− 1

n− 10

)
+

(
1

n− 4
− 1

n− 9

)
+

(
1

n− 3
− 1

n− 8

)]
=

=
5

21
− 5

6
− 1

5

(
−1

1
− 1

2
− 1

3
− 1

4
− 1

5
+

1

n− 7
+

1

n− 6
+

1

n− 5
+

+
1

n− 4
+

1

n− 3

)
.

Because for arbitrary integer c is lim
n→∞

1

n+ c
= 0, we have

s(3, 8) = lim
n→∞

sn =
5

21
− 5

6
+

1

5

(
1

1
+

1

2
+

1

3
+

1

4
+

1

5

)
=

=
5

21
− 5

6
+

1

5
· 137

60
= − 97

700
= 0.13857142.

ii) By the formula (3) from Theorem 1, using values of the harmonic numbers from
the table 1, we get the sum s(3, 8) more easily:

s(3, 8) =
1

8− 3
(H3−1 −H8−1 + 2H8−3 − 2H8−3−1) =

=
1

5
(H2 −H7 + 2H5 − 2H4) =

1

5

(
3

2
− 363

140
+ 2· 137

60
− 2· 25

12

)
=

=
1

5

(
3

2
− 363

140
+

137

30
− 25

6

)
= − 97

700
= 0.13857142.
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Example 2 Using i) n th partial sum, ii) formula (3), and iii) formula for the sum
s(a, a+ 1) from Corollary 1 calculate the sum of the series

∞∑

k=1

1

(k − 3)(k − 4)
.

i) The series
∞∑

k=1

1

(k − 3)(k − 4)
, where a = 3, b = 4, has, using the equality

1

(k − a)(k − b) =
1

a− b
(

1

k − a −
1

k − b
)

, the following nth partial sum (where

k = 1, 2, 5, 6, 7, . . . , n− 2, n− 1, n):

sn =

(
1

(−2)(−3)
+

1

(−1)(−2)

)
+

(
1

2 · 1 +
1

3 · 2 +
1

4 · 3 + · · ·

+
1

(n− 5)(n− 6)
+

1

(n− 4)(n− 5)
+

1

(n− 3)(n− 4)

)
=

=

(
1

6
+

1

2

)
+

1

3− 4

[(
1

2
− 1

1

)
+

(
1

3
− 1

2

)
+

(
1

4
− 1

3

)
+ · · ·

· · · +

(
1

n− 5
− 1

n− 6

)
+

(
1

n− 4
− 1

n− 5

)
+

(
1

n− 3
− 1

n− 4

)]
=

=
2

3
−
(
−1

1
+

1

n− 3

)
=

5

3
− 1

n− 3
.

Because for arbitrary integer c is lim
n→∞

1

n+ c
= 0, we have

s(3, 4) = lim
n→∞

sn =
5

3
− 0 = 1.6.

ii) By the formula (3) from Theorem 1, using values of the harmonic numbers from
the table 1, we get the sum s(3, 4) more easily:

s(3, 4) =
1

4−3
(H3−1−H4−1 + 2H4−3−2H4−3−1) = H2−H3 + 2H1−2H0 =

=
3

2
− 11

6
+ 2·1− 2·0 =

5

3
= 1.6.

The identical result we get by formula s(a, a + 1) = Ha−1 − Ha + 2. For a = 3
we have

s(3, 4) = H2 −H3 + 2 =
3

2
− 11

6
+ 2 =

5

3
= 1.6.
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2 Numerical veri�cation
In this paper we solve the problem to determine the values of the sum s(a, b) =
∞∑

k=1
k 6=a,b

1

(k − a)(k − b) for a = 1, 2, . . . , 9 and b = a+1, a+2, . . . , 10. We use on the

one hand an approximative evaluation of the sum s(a, b, t) =
t∑

k=1
k 6=a,b

1

(k − a)(k − b) ,

where t = 108, using the basic programming language of the computer algebra
system Maple 16, and on the other hand the formula (3) for evaluation the sum
s(a, b). We compare 45 = 9 + 8 + · · · + 1 pairs of these ways obtained sums
s(a, b, 108) and s(a, b) to verify the formula (3). We use following simple proce-
dures hn, rp2abpos and two for statements:

hn:=proc(h)
local i,s; s:=0;
if h=0 then s:=0 else
for i from 1 to h do

s:=s+1/i;
end do;
end if;

end proc:

rp2abpos:=proc(a,b,n)
local k,sab,sabt; sabt:=0;
sab:=(hn(a-1)-hn(b-1)+2*hn(b-a)-2*hn(b-a-1))/(b-a);
print("n=",n,"s(",a,b,")=",evalf[20](sab));
for k from 1 to n do

if k<>a then
if k=<>b then sabt:=sabt+1/((k-a)*(k-b))

else sabt:=sabt+0; end if; end if;
end do;
print("sum(",a,b,")=",evalf[20](sabt));
print("diff=",evalf[20](abs(sabt-sab)));

end proc:

for i from 1 to 9 do
for j from i+1 to 10 do

rp2abpos(i,j,100000000);
end do;

end do;
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The approximative values of the sums s(a, b) rounded to 4 decimals obtained
by these procedures are written into the following table:

s(a, b) b = 2 b = 3 b = 4 b = 5 b = 6

a = 1 1.0000 −0.2500 −0.3889 −0.3958 −0.3767

a = 2 × 1.5000 0.0833 −0.1389 −0.1958

a = 3 × × 1.6667 0.2083 −0.0389

a = 4 × × × 1.7500 0.2750

a = 5 × × × × 1.8000

s(a, b) b = 7 b = 8 b = 9 b = 10 ×
a = 1 −0.3528 −0.3296 −0.3085 −0.2896 ×
a = 2 −0.2100 −0.2099 −0.2046 −0.1974 ×
a = 3 −0.1125 −0.1386 −0.1474 −0.1490 ×
a = 4 0.0167 −0.0649 −0.0969 −0.1104 ×
a = 5 0.3167 0.0524 −0.0336 −0.0691 ×
a = 6 1.8333 0.3452 0.0774 −0.0114 ×
a = 7 × 1.8571 0.3661 0.0959 ×
a = 8 × × 1.8750 0.3819 ×
a = 9 × × × 1.8889 ×

Table 2: The approximate values of the sums s(a, b) for a = 1, 2, . . . , 9,
b = a+ 1, a+ 2, . . . , 10.

Computation of 45 couples of the sums s(a, b, 108) and s(a, b) took over 4 hours.
The absolute errors, i.e. the differences

∣∣s(a, b)− s(a, b, 108)
∣∣, are about 10−8.

3 Conclusion
As regards the problem to state the sum of the series of reciprocals of the polyno-
mial of degree two, the author found only a mention on the web site [6] regarding

the sum of the series
∞∑
n=1

1

n(n+ k)
, where k be a positive integer. It is stated that

the sum of this series is equal to the fraction Hk

k
, where Hk is the k th harmonic

number.
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Another mention about sum of the special series of reciprocals of the polyno-

mial of degree two concerns the sum of the series
∞∑
n=1

1

n2 + a2
, where a is arbitrary

non-zero real number. It is deduced that the sum of this series equals to the fraction
πa coth(πa) − 1

2a2
.

So we can say that these paper dealing with the sum of the series of reciprocals
of the quadratic polynomials with different positive integer roots a and b, i.e. with
the series ∞∑

k=1
k 6=a,b

1

(k − a)(k − b) ,

where 0 < a < b are integers, brings new results which are not yet discuss in the
literature.

We derived that the sum s(a, b) of this series is given by the following formula
using the n th harmonic numbers Hn

s(a, b) =
1

b− a (Ha−1 −Hb−1 + 2Hb−a − 2Hb−a−1) .

We veri�ed this result by computing 45 various sums by using the computer alge-
bra system Maple 16.

We stated four basic properties of the sum s(a, b):

1. s(a, b) = s(b, a), 2. s(1, b) =
1

b− 1
(Hb−1 − 2Hb−2) for b ≥ 3,

3. s(a, a+ 1) = Ha−1 −Ha + 2 for a ≥ 2, whence lim
a→∞

s(a, a+ 1) = 2,
4. s(1, 2) = H1 = 1.

The series of reciprocals of the quadratic polynomials with different positive
integer roots so belong to special types of in�nite series, such as geometric and
telescoping ones, which sums are given analytically by means of a simple formula.
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Abstract: The paper is concerned with a weakly delayed difference system

x(k + 1) = Ax(k) + Bx(k − 1)

wherek = 0, 1, . . . andA = (aij)
3
i,j=1, B = (bij)

3
i,j=1 are constant matrices. It

is demonstrated that the initial delayed system can be transformed into a linear
system without delay and, moreover, that all the eigenvalues of the matrix of the
linear terms of this system can be obtained as the union of all the eigenvalues of
matricesA andB.
In such a case, the new linear system without delay can be solved easily, e.g., by
utilizing the well-known Putzer algorithm with one of the possible cases being
considered in the paper.

Keywords: Discrete system, weak delay, initial problem, Putzer algorithm.

Introduction

The theory of weakly delayed systems is considered, for planar discrete systems,
in the papers [1] – [3]. In this paper, we investigate a system of difference equati-
ons

x(k + 1) = Ax(k) + Bx(k − 1), k = 0, 1, . . . (1)
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whereA andB are3 by 3 constant matrices with elementsaij and bij, i, j =
1, 2, 3.
It is known that, for every matrixA, there exists a nonsingular matrixS transfor-
ming it into the corresponding Jordan formA∗. This means that

A∗ = S−1AS

whereA∗ can have one of the following seven possible forms (denoted below as
A1, . . . ,A7), depending on the roots of the characteristic equation

det (A− λI) = 0, (2)

whereI (throughout the paper) is a 3 by 3 unit matrix.
If (2) has three real distinct rootsλ1, λ2, λ3, then

A1 =

λ1 0 0
0 λ2 0
0 0 λ3

 , (3)

if (2) has one double real rootλ1, λ2 = λ3, then

A2 =

λ1 0 0
0 λ2 0
0 0 λ2

 (4)

or

A3 =

λ1 0 0
0 λ2 1
0 0 λ2

 , (5)

in the case of one triple real rootλ = λ1,2,3, the following forms are possible

A4 =

λ 0 0
0 λ 0
0 0 λ

 , (6)

A5 =

λ 1 0
0 λ 0
0 0 λ

 , (7)
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A6 =

λ 1 0
0 λ 1
0 0 λ

 (8)

and, finally, if one root is real and two roots are complex conjugate, i.e.λ2,3 =
p± iq, with q 6= 0, then

A7 =

λ 0 0
0 p q
0 −q p

 . (9)

We assume that (1) is a weakly delayed system in the sense of the following
definition.

Definition 1 System(1) is called weakly delayed if the characteristic equations
for (1) and for the system without delay

x(k + 1) = Ax(k)

have identical roots, that is, if, for everyλ ∈ C \ {0},

det
(
A + λ−1B − λI

)
= det (A− λI) .

Applying Definition 1 to system (1), we get conditions under which the system is
weakly delayed. Such conditions are given in the next part.
One way of solving system (1) is transforming (1) into a system without delay.
Then, (1) can be written as

y(k + 1) = Aiy(k) (10)

where

Ai =

(
Ai B
I Θ

)
, i = 1, . . . , 7,

whereΘ is zero matrix and

yj(k) = xj(k), j = 1, 2, 3, yj(k) = xj−3(k − 1), j = 4, 5, 6.

To solve (10) by Putzer algorithm, we need all eigenvalues of matricesAi, i =
1, . . . , 7.
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1 Relationship between the eigenvalues ofAi, B, and
Ai

The main purpose of this paper is to show that the set of all eigenvalues of mat-
ricesAi, i = 1, . . . , 7 can be written as the union of the sets of all eigenvalues of
matricesAi and relevant matrixB.
In other words we prove the folloving theorem.

Theorem 1 (Main result) Let system(1)be weakly delayed and leti ∈ {1, . . . , 7}
be fixed. Then the set of all the eigenvaluesµi

j, j = 1, . . . , 6 of the matrixAi equals
to the union of the sets of all the eigenvaluesλj, j = 1, 2, 3 of the matrixAi and
all the eigenvaluesλj, j = 4, 5, 6 of the matrixB.

The property mentioned by Theorem 1 is not obvious and does not hold for arbit-
rary matricesA andB as shown by the following example.

Example 1 Let

A =

1 0 0
0 2 0
0 0 3

 , B =

 1 2 −2
−1 0 2
−2 2 1

 .

Then

A =


1 0 0 1 2 −2
0 2 0 −1 0 2
0 0 3 −2 2 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .

It is easy to verify that the eigenvalues ofA are

λ1 = 1, λ2 = 2, λ3 = 3,

and the eigenvalues ofB are

λ4 = 1, λ5 = 3, λ6 = −2.

The eigenvalues ofA (calculated by WolframAlpha software) are

µ1
.
= 3.57695,
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µ2
.
= 1.61803,

µ3
.
= 1.14869 + 0.773951i,

µ4
.
= 1.14869− 0.773951i,

µ5
.
= −0.874334,

µ6
.
= −0.618034.

The eigenvaluesλi 6= µj, i, j = 1, . . . , 6.

1.1 Proof of Theorem 1 ifi = 1

The following theorem is proved in [5], Theorem 3.

Theorem 2 System(1) is a weakly delayed system if and only if

b11 = b22 = b33 = 0, (11)

b12b23b31 + b13b21b32 = 0, (12)

b12b21 + b13b31 + b23b32 = 0, (13)

λ3b12b21 + λ2b13b31 + λ1b23b32 = 0. (14)

Now we prove that Theorem 1 holds ifi = 1.

Lemma 1 Let a matrixA be of type(3) and let the entries of a matrixB sa-
tisfy (11)–(14). Then, the eigenvaluesµi, i = 1, . . . , 6 of the matrix

A1 =


µ1 0 0 0 b12 b13

0 µ2 0 b21 0 b23

0 0 µ3 b31 b32 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 =

(
A1 B
I Θ

)

areµ1 = λ1, µ2 = λ2, µ3 = λ3, µ4 = µ5 = µ6 = 0.

Proof.Computingdet(A1 − µI), we get
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∆1 = det(A1 − µI) =

∣∣∣∣∣∣∣∣∣∣∣∣

λ1 − µ 0 0 b11 b12 b13

0 λ2 − µ 0 b21 b22 b23

0 0 λ3 − µ b31 b32 b33

1 0 0 −µ 0 0
0 1 0 0 −µ 0
0 0 1 0 0 −µ

∣∣∣∣∣∣∣∣∣∣∣∣
.

Multiplying the first (the second, the third) column byµ and adding it to the fourth
(the fifth, the sixth) column we get:

∆1 =

∣∣∣∣∣∣∣∣∣∣∣∣

λ1 − µ 0 0 µ(λ1 − µ) + b11 b12 b13

0 λ2 − µ 0 b21 µ(λ2 − µ) + b22 b23

0 0 λ3 − µ b31 b32 µ(λ3 − µ) + b33

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

By Laplace decomposition with respect to the sixth row, we have:

∆1 = −

∣∣∣∣∣∣∣∣∣∣
λ1 − µ 0 µ(λ1 − µ) + b11 b12 b13

0 λ2 − µ b21 µ(λ2 − µ) + b22 b23

0 0 b31 b32 µ(λ3 − µ) + b33

1 0 0 0 0
0 1 0 0 0

∣∣∣∣∣∣∣∣∣∣
.

Again, by Laplace decomposition with respect to the last row, we derive:

∆1 =

∣∣∣∣∣∣∣∣
λ1 − µ µ(λ1 − µ) + b11 b12 b13

0 b21 µ(λ2 − µ) + b22 b23

0 b31 b32 µ(λ3 − µ) + b33

1 0 0 0

∣∣∣∣∣∣∣∣ .

Finally, by Laplace decomposition with respect to the last row, we obtain:

∆1 = −

∣∣∣∣∣∣
µ(λ1 − µ) + b11 b12 b13

b21 µ(λ2 − µ) + b22 b23

b31 b32 µ(λ3 − µ) + b33

∣∣∣∣∣∣ .

Now, direct computation leads to:

∆1 = µ6 + (−λ1 − λ2 − λ3)µ
5 + (λ1λ2 + λ1λ3 + λ2λ3 − b11 − b22 − b33)µ

4
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+ ((b11 + b22)λ3 + (b11 + b33)λ2 + (b22 + b33)λ1 − λ1λ2λ3)µ
3

+ (−b23b32 + b22b33 − b11λ2λ3 − b13b31 − b33λ1λ2 − b12b21 − b22λ1λ3

+ b11b22 + b11b33)µ
2

+ (b23b32λ1 − b11b33λ2 − b11b22λ3 + b13b31λ2 − b22b33λ1 + b12b21λ3)µ

− b11b22b33 − b12b23b31 − b13b21b32 + b12b21b33 + b13b22b31 + b11b23b32.

Since (11)–(14) hold, further simplification of∆1 gives:

∆1 = µ6 + (−λ1 − λ2 − λ3)µ
5 + (λ1λ2 + λ1λ3 + λ2λ3)µ

4 + (−λ1λ2λ3)µ
3

= µ3(µ− λ1)(µ− λ2)(µ− λ3).

Now it is easy to see that the roots of the equationdet(A1 − µI) = 0 are as
formulated in the lemma.

Example 2 Let

A =

1 0 0
0 2 0
0 0 3

 , B =

0 1 −2
2 0 2
2 1 0

 .

Then

A =


1 0 0 0 1 −2
0 2 0 2 0 2
0 0 3 2 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .

It is easy to verify that the eigenvalues ofA are

λ1 = 1, λ2 = 2, λ3 = 3,

with the eigenvalues ofB being

λ4 = λ5 = λ6 = 0.

The eigenvalues ofA (calculated by WolframAlpha software) are

µ1 = 1, µ2 = 2, µ3 = 3, µ4 = µ5 = µ6 = 0.

Eigenvaluesλi, i = 1, . . . , 6 are the same as eigenvaluesµj, j = 1, . . . , 6.
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1.2 Proof of Theorem 1 ifi = 2

The following theorem is proved in [5], Theorem 4.

Theorem 3 System(1) is a weakly delayed system if and only if

b11 = 0, (15)

b22 + b33 = 0, (16)

b12b21 + b13b31 = 0, (17)

b22b33 − b23b32 = 0, (18)

b12b23b31 + b13b21b32 − b13b22b31 − b12b21b33 = 0. (19)

Now we prove that Theorem 1 holds ifi = 2.

Lemma 2 Let a matrixA2 be of type(4) and let the entries of a matrixB sa-
tisfy (15)–(19). Then, the eigenvaluesµi, i = 1, . . . , 6 of the matrix

A2 =


µ1 0 0 b11 b12 b13

0 µ2 0 b21 b22 b23

0 0 µ3 b31 b32 b33

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 =

(
A2 B
I Θ

)

areµ1 = λ1, µ2 = µ3 = λ2, µ4 = µ5 = µ6 = 0.

Proof.Computingdet(A2 − µI), we get

∆2 = det(A2 − µI) =

∣∣∣∣∣∣∣∣∣∣∣∣

λ1 − µ 0 0 b11 b12 b13

0 λ2 − µ 0 b21 b22 b23

0 0 λ2 − µ b31 b32 b33

1 0 0 −µ 0 0
0 1 0 0 −µ 0
0 0 1 0 0 −µ

∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣

λ1 − µ 0 0 µ(λ1 − µ) + b11 b12 b13

0 λ2 − µ 0 b21 µ(λ2 − µ) + b22 b23

0 0 λ2 − µ b31 b32 µ(λ2 − µ) + b33

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= · · · = −

∣∣∣∣∣∣
µ(λ1 − µ) + b11 b12 b13

b21 µ(λ2 − µ) + b22 b23

b31 b32 µ(λ2 − µ) + b33

∣∣∣∣∣∣
= µ6 + (−λ1 − 2λ2)µ

5 + (2λ1λ2 + λ2
2 − b11 − b22 − b33)µ

4

+ (−λ1λ
2
2 + 2b11λ2 + b22λ1 + b22λ2 + b33λ1 + b33λ2)µ

3

+ (−b11λ
2
2 − b33λ1λ2 − b33λ1λ2 + b11b22 + b11b33 − b12b21 − b13b31 + b22b33

− b23b32)µ
2

+ (−b11b22λ2 − b11b33λ2 + b12b21λ2 + b13b31λ2 − b22b33λ1 + b23b32λ1)µ

− b11b22b33 + b11b23b32 + b12b21b33 − b12b23b31 − b13b21b32 + b13b22b31

= µ6 + (−λ1 − 2λ2)µ
5 + (2λ1λ2 + λ2

2)µ
4 + (−λ1λ

2
2)µ

3

= µ3(µ− λ1)(µ− λ2)
2

and the roots of the equationdet(A2 − µI) = 0 are as formulated in the lemma.

1.3 Proof of Theorem 1 ifi = 3

The following theorem is proved in [5], Theorem 5.

Theorem 4 System(1) is a weakly delayed system if and only if

b11 = 0, (20)

b22 + b33 = 0, (21)

b32 = 0, (22)

b22b33 − b12b21 − b13b31 = 0, (23)

(λ1 − λ2)b22b33 + b12b31 = 0, (24)

b12b23b31 − b13b22b31 − b12b21b33 = 0. (25)
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Now we prove that Theorem 1 holds ifi = 3.

Lemma 3 Let a matrixA3 be of type(5) and let the entries of a matrixB sa-
tisfy (20)–(25). Then, the eigenvaluesµi, i = 1, . . . , 6 of the matrix

A3 =


µ1 0 0 b11 b12 b13

0 µ2 1 b21 b22 b23

0 0 µ3 b31 b32 b33

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 =

(
A3 B
I Θ

)

areµ1 = λ1, µ2 = µ3 = λ2, µ4 = µ5 = µ6 = 0.

Proof.Computingdet(A3 − µI), we get

∆3 = det(A3 − µI) =

∣∣∣∣∣∣∣∣∣∣∣∣

λ1 − µ 0 0 b11 b12 b13

0 λ2 − µ 1 b21 b22 b23

0 0 λ2 − µ b31 b32 b33

1 0 0 −µ 0 0
0 1 0 0 −µ 0
0 0 1 0 0 −µ

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

λ1 − µ 0 0 µ(λ1 − µ) + b11 b12 b13

0 λ2 − µ 1 b21 µ(λ2 − µ) + b22 µ + b23

0 0 λ2 − µ b31 b32 µ(λ2 − µ) + b33

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= · · · = −

∣∣∣∣∣∣
µ(λ1 − µ) + b11 b12 b13

b21 µ(λ2 − µ) + b22 µ + b23

b31 b32 µ(λ2 − µ) + b33

∣∣∣∣∣∣
= µ6 + (−λ1 − 2λ2)µ

5 + (−b22 − b33 + 2λ1λ2 + λ2
2 − b11)µ

4

+ (b33λ1 + b33λ1 + b33λ2 + 2b11λ2 − λ1λ
2
2 + b33λ2 − b32)µ

3

+ (b22b33 − b12b21 + λ1b32 − b22λ1λ2 + b11b33 − b33λ1λ2 − b11λ
2
2 + b11b22
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− b23b32 − b13b31)µ
2

+ (b23b32λ1 + b13b31λ2 + b12b21λ2 + b11b32 − b22b33λ1 − b11b33λ2 − b11b22λ2

− b31b12)µ

+ b11b23b32 − b13b21b32 − b12b23b31 + b13b22b31 − b11b22b33 + b12b21b33

= µ6 + (−λ1 − 2λ2)µ
5 + (2λ1λ2 + λ2

2)µ
4 + (−λ1λ

2
2)µ

3

= µ3(µ− λ1)(µ− λ2)
2,

i.e. the lemma holds.

1.4 Proof of Theorem 1 ifi = 4

The following theorem is proved in [5], Theorem 6.

Theorem 5 System(1) is a weakly delayed system if and only if

b11 + b22 + b33 = 0, (26)

b11b22 + b11b33 + b22b33 − b12b21 − b13b31 − b23b32 = 0, (27)

b11b22b33 + b12b23b31 + b13b21b32 − b13b22b31 − b12b21b33 − b11b23b32 = 0. (28)

Now we prove that Theorem 1 holds ifi = 4.

Lemma 4 Let a matrixA4 be of type(6) and let the entries of a matrixB sa-
tisfy (26)–(28). Then, the eigenvaluesµi, i = 1, . . . , 6 of the matrix

A4 =


µ1 0 0 b11 b12 b13

0 µ2 0 b21 b22 b23

0 0 µ3 b31 b32 b33

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 =

(
A4 B
I Θ

)

areµ1 = µ2 = µ3 = λ, µ4 = µ5 = µ6 = 0.

Proof.Similarly as above, we get
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∆4 = det(A4 − µI) =

∣∣∣∣∣∣∣∣∣∣∣∣

λ− µ 0 0 b11 b12 b13

0 λ− µ 0 b21 b22 b23

0 0 λ− µ b31 b32 b33

1 0 0 −µ 0 0
0 1 0 0 −µ 0
0 0 1 0 0 −µ

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

λ− µ 0 0 µ(λ− µ) + b11 b12 b13

0 λ− µ 0 b21 µ(λ− µ) + b22 b23

0 0 λ− µ b31 b32 µ(λ− µ) + b33

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= · · · = −

∣∣∣∣∣∣
µ(λ− µ) + b11 b12 b13

b21 µ(λ− µ) + b22 b23

b31 b32 µ(λ− µ) + b33

∣∣∣∣∣∣
= µ6 − 3λµ5 + (3λ2 − b11 − b22 − b33)µ

4 + (−λ3 + 2b11λ + 2b22λ + 2b33λ)µ3

+ (−b11λ
2 − b22λ

2 − b33λ
2 + b11b22 + b11b33 − b12b21 − b13b31 + b22b33

− b23b32)µ
2

+ (−b11b22λ− b11b33λ + b12b21λ + b13b31λ− b22b33λ + b23b32λ)µ

− b11b22b33 + b11b23b32 + b12b21b33 − b12b23b31 − b13b21b32 + b13b22b31

= µ6 + (−3λ)µ5 + (3λ2)µ4 + (−λ3)µ3

= µ3(µ− λ)3.

1.5 Proof of Theorem 1 ifi = 5

The following theorem is proved in [5], Theorem 7.

Theorem 6 System(1) is a weakly delayed system if and only if

b11 + b22 + b33 = 0, (29)
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b21 = 0, (30)

b23b31 = 0, (31)

b11b22 + b11b33 + b22b33 − b13b31 − b23b32 = 0, (32)

b11b22b33 − b13b22b31 − b11b23b32 = 0. (33)

Now we prove that Theorem 1 holds ifi = 5.

Lemma 5 Let a matrixA5 be of type(7) and let the entries of a matrixB sa-
tisfy (29)–(33). Then, the eigenvaluesµi, i = 1, . . . , 6 of the matrix

A5 =


µ1 1 0 b11 b12 b13

0 µ2 0 b21 b22 b23

0 0 µ3 b31 b32 b33

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 =

(
A5 B
I Θ

)

areµ1 = µ2 = µ3 = λ, µ4 = µ5 = µ6 = 0.

Proof.Obviously

∆5 = det(A5 − µI) =

∣∣∣∣∣∣∣∣∣∣∣∣

λ− µ 1 0 b11 b12 b13

0 λ− µ 0 b21 b22 b23

0 0 λ− µ b31 b32 b33

1 0 0 −µ 0 0
0 1 0 0 −µ 0
0 0 1 0 0 −µ

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

λ− µ 1 0 µ(λ− µ) + b11 µ + b12 b13

0 λ− µ 0 b21 µ(λ− µ) + b22 b23

0 0 λ− µ b31 b32 µ(λ− µ) + b33

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= · · · = −

∣∣∣∣∣∣
µ(λ− µ) + b11 µ + b12 b13

b21 µ(λ− µ) + b22 b23

b31 b32 µ(λ− µ) + b33

∣∣∣∣∣∣
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= µ6 − 3λµ5 + (3λ2 − b11 − b22 − b33)µ
4

+ (−λ3 + 2b11λ + 2b33λ + 2b33λ− b21)µ
3

+ (−b11λ
2 − b22λ

2 − b33λ
2 + b11b22 + b11b33 − b12b21 − b13b31 + b21λ + b22b33

− b23b32)µ
2

+ (−b11b22λ− b11b33λ + b12b21λ + b13b31λ− b22b33λ + b23b32λ + b21b33

− b23b31)µ

− b11b22b33 + b11b23b32 + b12b21b33 − b12b23b31 − b13b21b32 + b13b22b31

= µ6 + (−3λ)µ5 + (3λ2)µ4 + (−λ3)µ3

= µ3(µ− λ)3.

1.6 Proof of Theorem 1 ifi = 6

The following theorem is proved in [5], Theorem 8.

Theorem 7 System(1) is a weakly delayed system if and only if

b11 + b22 + b33 = 0, (34)

b21 + b32 = 0, (35)

b31 = 0, (36)

b21b33 + b11b32 = 0, (37)

b11b22 + b11b33 + b22b33 − b12b21 − b23b32 = 0, (38)

b11b22b33 + b13b21b32 − b12b21b33 − b11b23b32 = 0. (39)

Now we prove that Theorem 1 holds ifi = 6.

Lemma 6 Let a matrixA6 be of type(8) and let the entries of a matrixB sa-
tisfy (34)–(39). Then, the eigenvaluesµi, i = 1, . . . , 6 of the matrix

A6 =


µ1 1 0 b11 b12 b13

0 µ2 1 b21 b22 b23

0 0 µ3 b31 b32 b33

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 =

(
A6 B
I Θ

)

areµ1 = µ2 = µ3 = λ, µ4 = µ5 = µ6 = 0.
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Proof.Computingdet(A6 − µI), we get

∆6 = det(A6 − µI) =

∣∣∣∣∣∣∣∣∣∣∣∣

λ− µ 1 0 b11 b12 b13

0 λ− µ 1 b21 b22 b23

0 0 λ− µ b31 b32 b33

1 0 0 −µ 0 0
0 1 0 0 −µ 0
0 0 1 0 0 −µ

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

λ− µ 1 0 µ(λ− µ) + b11 µ + b12 b13

0 λ− µ 1 b21 µ(λ− µ) + b22 µ + b23

0 0 λ− µ b31 b32 µ(λ− µ) + b33

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= · · · = −

∣∣∣∣∣∣
µ(λ− µ) + b11 µ + b12 b13

b21 µ(λ− µ) + b22 µ + b23

b31 b32 µ(λ− µ) + b33

∣∣∣∣∣∣
= µ6 − 3λµ5 + (3λ2 − b11 − b22 − b33)µ

4

+ (−λ3 + 2b11λ + 2b22λ + 2b33λ− b21 − b32)µ
3

+ (−b11λ
2 − b33λ

2 − b33λ
2 + b11b22 + b11b33 − b12b21 − b13b31 + b21λ + b22b33

− b23b32 + b32λ− b31)µ
2

+ (−b11b220λ− b11b33λ + b12b21λ + b13b31λ− b22b33λ + b23b32λ + b11b32

− b12b31 + b21b33 − b23b31)µ

− b11b22b33 + b11b23b32 + b12b21b33 − b12b23b31 − b13b21b32 + b13b22b31

= µ6 + (−3λ)µ5 + (3λ2)µ4 + (−λ3)µ3

= µ3(µ− λ)3

and the lemma is valid.

1.7 Proof of Theorem 1 ifi = 7

The following theorem is proved in [5], Theorem 9.

98



Theorem 8 System(1) is a weakly delayed system if and only if

b11 = 0, (40)

b22 + b33 = 0, (41)

b23 − b32 = 0, (42)

b22b33 − b12b21 − b13b31 − b23b32 = 0, (43)

(λ− p)(b12b21 + b13b31) + q(b12b31 − b13b21) = 0, (44)

b12b23b31 + b13b21b32 − b13b22b31 − b12b21b33 = 0. (45)

Now we prove that Theorem 1 holds ifi = 7.

Lemma 7 Let a matrixA7 be of type(9) and let the entries of a matrixB sa-
tisfy (40)–(45). Then, the eigenvaluesµi, i = 1, . . . , 6 of the matrix

A7 =


µ1 1 0 b11 b12 b13

0 µ2 0 b21 b22 b23

0 0 µ3 b31 b32 b33

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 =

(
A7 B
I Θ

)

whereI is an identity matrix andΘ is zero matrix areµ1 = λ, µ2 = p + qi,
µ3 = p− qi, µ4 = µ5 = µ6 = 0.

Proof.Computingdet(A7 − µI), we get

∆7 = det(A7 − µI) =

∣∣∣∣∣∣∣∣∣∣∣∣

λ− µ 0 0 b11 b12 b13

0 p− µ q b21 b22 b23

0 −q p− µ b31 b32 b33

1 0 0 −µ 0 0
0 1 0 0 −µ 0
0 0 1 0 0 −µ

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

λ− µ 0 0 µ(λ− µ) + b11 b12 b13

0 p− µ q b21 µ(p− µ) + b22 µq + b23

0 −q p− µ b31 −µq + b32 µ(p− µ) + b33

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
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= · · · = −

∣∣∣∣∣∣
µ(λ− µ) + b11 b12 b13

b21 µ(p− µ) + b22 µq + b23

b31 −µq + b32 µ(p− µ) + b33

∣∣∣∣∣∣
= µ6 + (−λ− 2p)µ5 + (2λp + p2 + q2 − b11 − b22 − b33)µ

4

+ (−λp2 − λq2 + 2b11p + b22λ + b22p + b23q − b32q + b33λ + b33p)µ3

+ (−b11p
2 − b11q

2 − b22λp− b23λq + b32λq − b33λp + b11b22 + b11b33 − b12b21

− b13b31 + b22b33 − b23b32)µ
2

+ (−b11b22p− b11b23q + b11b32q − b11b33p + b12b21p− b12b31q + b13b21q

+ b13b31p− b22b33λ + b23b32λ)µ

− b11b22b33 + b11b23b32 + b12b21b33 − b12b23b31 − b13b21b32 + b13b22b31

= µ6 + (−λ− 2p)µ5 + (2λp + p2 + q2)µ4 + (−λp2 − λq2)µ3

= µ3(µ− λ)(µ2 − 2µp + p2 + q2) = µ3(µ− λ)(µ− (p + qi))(µ− (p− qi)).

Now it is easy to see that the roots of the equationdet(A7 − µI) = 0 are as
formulated in the lemma.

2 Utilization of Putzer Algorithm

To compute the powersDk, k ≥ 0 of an s by s matrix D, we recall a Putzer
algorithm (see, e.g., [4], p. 118). It calculates the powers using the formula

Dk =
s∑

j=1

uj(k)M(j − 1), k ≥ 0 (46)

where

M(0) = I, (47)

M(1) = (D − ν1I)M(0), (48)

M(2) = (D − ν2I)M(1), (49)

. . .

M(s− 1) = (D − νs−1)M(s− 2) (50)

and

u1(k) = νk
1 , k ≥ 0, (51)
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u2(k) =
k−1∑
i=0

νk−1−i
2 u1(i), k ≥ 0, (52)

. . .

us(k) =
k−1∑
i=0

νk−1−i
s us−1(i), k ≥ 0, (53)

νi, i = 1, . . . , s are eigenvalues ofD.

2.1 Powers of the matrixA1

To compute the powersAk
1, k ≥ 0, we use formulas (46)–(53) and Lemma 1.

Then,k = 6 and

Ak
1 =

6∑
j=1

uj(k)M(j − 1), k ≥ 0

where

M(0) = I,

M(1) = (A1 − µ1I)M(0) = (A1 − µ1I) = (A1 − λ1I),

M(2) = (A1 − µ2I)M(1) = (A1 − λ2I)(A1 − λ1I),

M(3) = (A1 − µ3I)M(2) = (A1 − λ3I)(A1 − λ2I)(A1 − λ1I),

M(4) = (A1 − µ4I)M(3) = A1M(3) = A1(A1 − λ3I)(A1 − λ2I)(A1 − λ1I),

M(5) = (A1 − µ5I)M(4) = A2
1M(3) = A2

1(A1 − λ3I)(A1 − λ2I)(A1 − λ1I)

and

u1(k) = µk
1 = λk

1, k ≥ 0,

u2(k) =
k−1∑
i=0

µk−1−i
2 u1(i) =

k−1∑
i=0

λk−1−i
2 λi

1, k ≥ 0,

u3(k) =
k−1∑
i=0

µk−1−i
3 u2(i) =

k−1∑
i=0

λk−1−i
3

i−1∑
j=0

λi−1−j
2 λj

1, k ≥ 0,

u4(k) =
k−1∑
i=0

µk−1−i
4 u3(i) =

k−1∑
i=0

0k−1−iu3(i) = u3(k − 1)
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=
k−2∑
i=0

λk−2−i
3

i−1∑
j=0

λi−1−j
2 λj

1, k ≥ 0,

u5(k) =
k−1∑
i=0

µk−1−i
5 u4(i) =

k−1∑
i=0

0k−1−iu3(i− 1) = u3(k − 2)

=
k−3∑
i=0

λk−3−i
3

i−1∑
j=0

λi−1−j
2 λj

1, k ≥ 0,

u6(k) =
k−1∑
i=0

µk−1−i
6 u5(i) =

k−1∑
i=0

0k−1−iu3(i− 2) = u3(k − 3)

=
k−4∑
i=0

λk−4−i
3

i−1∑
j=0

λi−1−j
2 λj

1, k ≥ 0.

Finally, we get

Ak
1 =

6∑
j=1

uj(k)M(j − 1)

=λk
1I + (A1 − λ1I)

k−1∑
i=0

λk−1−i
2 λi

1

+ (A1 − λ2I)(A1 − λ1I)
k−1∑
i=0

λk−1−i
3

i−1∑
j=0

λi−1−j
2 λj

1

+ (A1 − λ3I)(A1 − λ2I)(A1 − λ1I)
k−2∑
i=0

λk−2−i
3

i−1∑
j=0

λi−1−j
2 λj

1

+A1(A1 − λ3I)(A1 − λ2I)(A1 − λ1I)
k−3∑
i=0

λk−3−i
3

i−1∑
j=0

λi−1−j
2 λj

1

+A2
1(A1 − λ3I)(A1 − λ2I)(A1 − λ1I)

k−4∑
i=0

λk−4−i
3

i−1∑
j=0

λi−1−j
2 λj

1,

k ≥ 0.
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2.2 Solution of an initial problem

Now we find an explicit solution to the initial problem

xi(0) = xi,0, xi(−1) = xi,−1, i = 1, 2, 3

to system (1), whereA = A1.
Define

Q =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 = (E|Θ).

Then, the solution is given by formula

x(k) = QAk
1 · x∗, k ≥ 0,

wherex∗ = (x1,0, x2,0, x3,0, x1,−1, x2,−1, x3,−1)
T .

3 Conclusion

For weakly delayed system (1) with matricesAi (wherei is fixed,i ∈ {1, . . . , 7}),
B, it is proved that the union of all their eigenvalues is the same as the set of all
eigenvalues of relevant matrixAi of the non-delayed system (10). The usefulness
of this fact is demonstrated for one of the possible cases when the Putzer algorithm
is used to solve an initial problem. Results for 3-dimensional discrete systems are
new (in [1] – [3] only planar systems are considered).

Acknowledgement

The authors were supported by the Grant FEKT-S-14-2200 of Faculty of Electrical
Engineering and Communication, BUT.

Reference

[1] Dibl ı́k J., Halfarov́a H.: Explicit general solution of planar linear discrete
systems with constant coefficients and weak delays.Adv. Difference Equ.
2013, Art. number: 50, doi:10.1186/1687-1847-2013-50, 1–29.

103



[2] Dibl ı́k J., Halfarov́a H.: General explicit solution of planar weakly delayed
linear discrete systems and pasting its solutions.Abstr. Appl. Anal. 2014,
doi:10.1155/2014/627295, 1–37.

[3] Dibl ı́k J., Khusainov D. Ya.,̌Smarda Z.:Construction of the general solution
of planar linear discrete systems with constant coefficients and weak delay.
Adv. Difference Equ. 2009, Art. ID 784935, 18 pp.

[4] Elaydi, S. N.:An Introduction to Difference Equations, Third Edition, Sprin-
ger, 2005.
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Abstract: It is the objective of this paper to demonstrate how Design of Experiments (DOE) 

methodology may be applied in industrial and technical practice. It is often the case that an 

industrial or technological process is not operated at optimal conditions. Usually a process is 

affected by many factors which often interact. DOE is a strategy for experimentation, 

whereby all acting factors are manipulated simultaneously. The usage of DOE to analyze 

operating conditions of longitudinal turning process is presented in this paper. The influence 

of input factors (cutting conditions) on the parameters of a surface roughness profile 

(responses) has been investigated. 

 

Keywords: Design of Experiments, mathematical-statistical model, longitudinal turning 
process, significant factors, roughness profile parameters. 
 
 
Introduction 
 
It is often the case that some processes are very complex and do not exist suitable description 
or mathematical-physical-chemical models of them, so it is necessary to recognize and 
identify the relationships between considered variables only experimentally. But experimental 
work is traditionally done by changing the value of one separate factor at a time until no 
further improvement is accomplished. This is called the COST approach to experimental work 
(COST is the acronym for consider one separate factor at a time) and represents the intuitive 
way of performing experiments [1]. But this is an inefficient approach. In experimentation for 
process improvement and discovery it is usually necessary to consider simultaneously the 
influence of a number of input variables (factors) and output variables (responses). A better 
approach is to construct a carefully prepared set of experiments, in which all relevant factors 
are varied simultaneously. This is called statistical experimental design, or, design of 
experiments (DOE) [2], [3]. The application of DOE to analyse operating conditions of 
longitudinal turning process is presented in this paper. 
 
 
1  Design of Experiments – Benefits 
 
It is important to note that the neglect of certain principles in planning and carrying out of 
experiments may lead to devastation of the whole experimental work. No analyse (no method) 
of experimental data does not help to correct wrong or ill-prepared experiment. Application of 
DOE methodology enables us to avoid this risk. DOE methodology provides us to obtain 
maximum amount of information of high statistical and numerical correctness in an optimal 
number of individual test runs and the use of statistical principles in the design of experiments 
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ensures that experiments are designed economically, that they are efficient, that individual 
and joint factor effects can be evaluated and conclusions can be stated with high reliability. 
 
 
2  Experimental 
 
2.1  Experimental conditions  
 
The influence of cutting conditions – input factors 321 ,, xxx  ( 1x – cutting speed cv , 2x  – feed 

f , 3x – depth of cut pa ) on the response (parameters of the resulting surface roughness: zR̂ – 

the maximum height of the roughness profile, aR̂ – the mean arithmetic deviation of 

roughness), i.e. function dependence  ( )321 ,,ˆ,ˆˆ xxxfaRzRy ==  during longitudinal turning of 

steel C45 have been investigated. The actual experiment was carried out under the operating 

conditions listed in Tab. 1. The parameters of the surface roughness aRzR ˆ,ˆ  were measured at 
defined experimental points by usage of roughness meter Mitutoyo Surftest SJ–301. 
Experimental points were indicated at the intersections of horizontal and vertical lines, the 

parameters of the surface roughness zR̂ , aR̂ were measured five times at each experimental 
point. The arithmetic average of five measurements was taken as an individual measurement. 
Experimentally obtained data represented an input matrix for statistical analysis. 

 
Experiment Code Rz.vc,f,ap – 12 050.1 
Used machine-tool: SU 40 

Used cutting tool 
Holder Cutting Blade Cutting Material 

rε 
[mm] 

MWLNR KNUX 190 405 EL 
P20 according 

ISO 
0.50 

Cutting Conditions 
vc 

[m.min-1] 
ap 

[mm] 
f 

[mm] 
8.792 – 351.680  0.10 – 3.00 0.100 – 0.500 

Set the tool to the workpiece axis h = 0  [mm] Cooling No 
Machined material 12 050.1   C45 

The measuring instruments Mitutoyo Surftest SJ – 301 to measure parameters of surface roughness  

Accuracy of 
calculation  

E = 1/1000 The chosen level of significance  α = 0.05 

The number of 
runs 

N = 8 The number of repeated measurements for each 
experimental unit 

m = 5 

Tab. 1 Experimental conditions  
Source: own 

 
2.2  Construction of full factorial design 
 
In order to identify significant factors affecting the surface roughness of machined material 
and analyse the relationships between them, the DOE methodology was used. Taking into 
account the expected non-linear dependencies, the two-level full factorial design in three 
factors, denoted 23, was chosen from a relatively large amount of design types. To perform a 
two-level full factorial design, a low level and a high level to each factor was assign. These 
settings were then used to construct an orthogonal array of experiment. Usually, the low level 
of a factor is denoted by -1, and the high level by +1. Individual test runs were performed on 
the basis of the design matrix of the experiment created as a combination of individual levels 
of three investigated factors according to Tab. 2. 
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Design Matrix Experimental matrix 

Run No 
Factors levels - Coded unit Factrors – Original unit 

x1 x2 x3 
vc 

[m.min-1] 
f 

[mm] 
ap 

[mm] 
1. -1 -1 -1 8.792 0.1 0.1 
2. +1 -1 -1 351.68 0.1 0.1 
3. -1 +1 -1 8.792 0.5 0.1 
4. +1 +1 -1 351.68 0.5 0.1 
5. -1 -1 +1 8.792 0.1 3.0 
6. +1 -1 +1 351.68 0.1 3.0 
7. -1 +1 +1 8.792 0.5 3.0 
8. +1 +1 +1 351.68 0.5 3.0 

Tab. 2 The 23 factorial design of experiment  
Source: own 

 
By means of DOE, individual runs were performed in random order to eliminate systematic 
error and to avoid subjective preference of any factor-level. Use scalar products the 
orthogonality of experiment design was verified, i.e. all columns of design matrix must be 
perpendicular to each other. Due to the orthogonality of the experimental design we can avoid 
improper indication of statistical insignificance of factors effects [4]. 
 
When least squares analysis is applied to the modelling of effects of several factors it is 
commonly known as multiple linear regression (MLR). To avoid numerical and statistical 
incorrectness in computation of regression model (e.g. incorrect indication of statistical 
insignificance of some factors due to their multicollinearity), it is necessary to perform DOE 
standardization (coding) of input factors into coded unit before applying regression analyse of 
experimentally obtained data. This is the proper way of expressing regression coefficients. 
Then we obtain not only correct statistical significance of regression model, but also correct 
statistical significance of regression coefficients [4].  
DoE coding (standardization) of input factors is based on the coding equation  

 

2

2
)(

)(
minmax

minmax

xx

xx
ix

ixd −

+
−

=  (1) 

where )(ix – is an original input variable (factor), ni ...,,1= , n – is the number of input 

factors, )(ixd – is a coded variable according to the DOE methodology, maxx  – the maximum 

value of original variable )(ix  [physical unit], minx  – the minimum value of original variable 
)(ix  [physical unit]. DoE standardization by formula (1) presents linear transformation of 

values of origin variable from interval > ,x< maxmin x  to interval >1 1, -<  and provides 

transformation of factors from original physical unit to dimensionless form.  
 
 
3  Results and discussion 
 
Based on the statistical analysis of experimentally obtained data (exploratory data analysis 
EDA, screening analysis, analysis of variance ANOVA, DOE analysis) using software such as 
Matlab, Statistica, QC-Expert, we have indicated important factors affecting the final surface 
roughness, we analysed how they interact, and obtained computational statistical models 
predicting the value of roughness parameters at varied levels of factors. Data analysis was 
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performed with a statistically correct approach including analysis of the basic assumptions 
and subsequent analysis of the classical regression triplet: data, model, residues. 
Subsequently, as the conditions of normality of repeated measurements and homogeneity of 
variance of repeated measurements and testing for the presence of outliers had been verified, 
regression analysis was performed; the results are listed in Tab. 3. During our experimental 
work various types of regression model was used (linear, quadratic). In this paper is presented 
the regression model in the form of power function:  

 321010ˆ,ˆ b

p

bb

c

b
afvaRzR ⋅⋅⋅=  (2) 

 

Statistical 
value 

321010ˆ,ˆ b

p

bb

c

b
afvaRzR ⋅⋅⋅=  

Rz Ra bi – the estimation of i–th regression coefficient  
± bi  –  95 % confidence interval of regression 
coefficient estimation  
ti  –  the test statistic for the i-th regression coefficient  

          
ib

i

i
s

b
t =  

sbi  –  standard deviation of the i–th regression 
coefficient  

( )ft

2
1 α
−

 –  quantile of the t–test distribution  

71 =−= Nf , ( ) ( ) 571.27975.0

2
1

==
−

tft α    

H0 : bi = 0 , i = 1,2,.., k   versus       H1 : bi ≠ 0 

rejection region of H0:      

 ( )ft
i

t

2
1 α
−

> , −N the number of test runs 

b0 2.364 1.775 
± b0 0.424 0.343 
t0 14.348 13.309 
significance significant significant  
b1 -0.199 -0.162 
± b1 0.173 0.140 
t1 -2.956 -2.975 
significance significant  significant  
b2 0.787 1.077 
± b2 0.397 0.321 
t2 5.101 8.618 
significance significant significant 
b3 0.017 0.040 
± b3 0.188 0.152 
t3 0.229 0.678 
significance insignificant insignificant 

Tab. 3 Results of regression analysis 
Source: own 

 

As we can see, the null hypothesis H0  was tested against the alternative hypothesis H1  and it 
can be concluded that only for one regression coefficient b3 the hypothesis test with  

05.0=α reject the null hypothesis, i.e. the regression coefficient b3 is statistically 
insignificant. According to the results presented in Tab. 3 it was possible to develop the 
mathematical – statistical model, and considering DOE coding of individual factors (1) and 
natural unit (Tab. 2), the technological model of factors effect on the examined parameters of 
the resulting roughness profile was obtained in the form of natural scale: 
 

 
( ) ( ) ( )

( )173.0199.0

188.0017.0397.0787.0424.0364.2 **10ˆ
±

±±±

=

c

p

v

af
zR  (3) 

 
( ) ( ) ( )

( )140.0162.0

152.0040.0321.0077.1343.0775.1 **10ˆ
±

±±±

=

c

p

v

af
aR  (4)

 
 
It is convenient to display regression coefficients in a bar chart or plots of factor effects. 
Based on the results shown in Tab. 3, the Pareto diagrams of individual factors effect on the 
observed parameters are displayed in Fig. 1. and Fig. 2.  
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Fig. 1 Cutting conditions effect on the 

zR̂ value 

 

Fig. 2 Cutting conditions effect on the 

aR̂ value 
 

As we can see in the Fig. 1 and Fig. 2, the feed has the main effect on the studied parameters, 
while the cutting speed is of less importance and statistically insignificant appears to be the 

depth of cut. In order to express the functional dependence of observed parameters zR̂ and 

aR̂  on the cutting conditions, Pearson’s correlation coefficients (confidence interval of 
05.0=α ) were determined and their statistical significance was verified by the Student's t-

Test Criterion. Statistically significant effect of the feed f on the parameter zR̂  is confirmed 

by the high value of the pairwise correlation coefficient ( ) %843.80,._ +=
pc avfRzr , a direct 

dependency between them is obvious. The indirect dependency of parameter zR̂  on the 
cutting speed cv  is evident from the value of pairwise correlation 

coefficient ( ) %854.46,._ −=
pc afvRzr . The relationship between zR̂  and the depth of cut pa  is 

statistically insignificant, ( ) 3.634% ,._ =fvaRz cp
r . The effect of cutting conditions on the 

parameter aR̂  is demonstrated by the value of individual pairwise correlation coefficient: 

( ) %566.91,._ =
pc avfRar , ( ) %611.31,._ −=

pc afvRar , ( ) %199.7,._ =fvaRa cp
r .  

 
To verify correctness of regression model (3) and (4), the estimation of multiple correlation 
coefficient, the coefficient of determination and degree of variability of regression model was 

performed. For regression model (3), which express the effect of cutting conditions on zR̂ , 
the multiple correlation coefficient is %509.93,,_ +=

p
af

c
vRzr , the statistical significance of 

this estimation was confirmed by F-test. The regression model (3) explains 82.418% of the 

variability of the zR̂ values, which is expressed by the adjusted coefficient of determination 
(AdjR2) in order to eliminate the influence of multiple regression coefficients on the 
coefficient of determination R2. For regression model (4), which express the effect of cutting 

conditions on aR̂ , the multiple correlation coefficient is %137.97,,_ +=
p

af
c

vRar , its 95% 

confidence interval is (84,528%, 99,498%). The regression model (4) explains 92.097% of the 

variability of values aR̂ , i.e. AdjR2 = 92.097%. The analysis of factor effects on the value of 
investigated roughness profile parameters confirms the conclusions of previous experimental 
work, where the effect of cutting conditions on the parameters was examined [], []. Graphical 

representation of the individual factors effect on aR̂  is shown in Fig. 3. 
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vc [m.min-1]

-10,00

8,7072

30,000

f [mm] ap [mm]

 
Fig. 3 The factor effects on the resulting value aR̂  

 
Based on Fig. 3, it can be stated that the increase of cutting speed decreases the value of the 

aR̂  parameter, but along with the increasing of the feed values, the value of the examined aR̂  
parameter increases rapidly. Due to the change in the cutting depth, however, no marked 
change of examined parameters is achieved. 
 
 
4  Conclusion  
 
Unlike most scientific publications in this field of research (observation of operating 
conditions of longitudinal turning process), where is considered manipulating of only one 
factor at a time and its impact on the response, in our work we focused on the influence of all 
relevant factors and their interactions. The influence of cutting conditions – input factors 

321 ,, xxx  ( 1x – cutting speed cv , 2x  – feed f , 3x – depth of cut pa ) on the response 

(parameters of the resulting surface roughness: zR̂ – the maximum height of the roughness 

profile, aR̂ – the mean arithmetic deviation of roughness), i.e. function dependence  

( )321 ,,ˆ,ˆˆ xxxfaRzRy ==  during longitudinal turning of steel C45 have been investigated. In 

order to identify significant factors affecting the surface roughness of machined material and 
analyse the relationships between them, the DOE methodology was used. DOE is very useful 
for this purpose, whereby all such factors are manipulated simultaneously and fewer 
experiments are required.  
This article clarifies some basic principles of DOE application to improve technological 
process (specifically the longitudinal turning process). Finally it can be stated that a 
combination of high cutting speeds, small feeds and small depths of cutting appears the most 
advantageous. The results obtained by our experimental work have important benefits for 
technical practice, because they were practically verified under conditions of real production.  
Results conclusion and interpretation were performed without numerical and statistical 
incorrectness, what was also confirmed by practical experience in the subject matter field of 
longitudinal turning of steel C45.  
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